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adviser, presenting me Mr. Rué and Mr. Giménez, all the corrections she did and the

opinions she gave about the act of researching. For a novice in research like me, her expert

judgment and advices were of great importance.

I would also like to thank Dr. Esther Silberstein, for the great interest she mani-

fested for my research those last two years, and specially for the two afternoons she shared

with me, discussing it. At the same time, I would like to thank Dr. Pere Cairó for
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my teacher ), Dr. Maria Calsamı́glia that influenced this work indirectly by introducing

me to a first experience with scientific research and giving me some useful advise on the

matter. Moreover, I would also like to thank the Ross Mathematics Program held

at Ohio State University, which I attended the summer of 2010. This program, through

classes done by Dr. Daniel Shapiro, whom I would also like to thank, and the work of

two intensive months in math gave me a lot of insight in mathematics, and also shaped my

idea of how to think and prove. Specially, I would like to thank Zev Rosengarten, my

i



ii

math counselor there and student at Princeton University, for spending literally more than

a hundred hours going over math problems with me. All this style and learning received
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Introduction

A mind once stretched by a new idea never regains its original dimension. Oliver Wendell

Holmes

It all started at the end of 2n d’ESO (8th grade) when I first read the research paper done by Oriol

Lozano: Nombres primers, anàlisi de la complexitat [11]. Although I could not understand most

of it I truly enjoyed his study, not only because I was also fascinated by prime numbers but also

because it was the symbol of what I considered a good research. Since then, it was my model: I

read it some more times, understanding it better as my mathematical background increased; I even

wrote a lot of prime searching algorithms at the end of ESO and I finally completely understood

his paper last summer.

Partly by chance, I was offered a research with many things in common at the end of 4t d’ESO

(10th grade) combining mathematics and computer science. At the time I was undecided between

doing a research about primes or about genetics, but the idea of that research seemed also very

interesting, which is why I accepted. First of all, it was an interdisciplinary work, in the sense

that it involved both computer science and mathematics; both topics of my interest. Moreover, it

included a high connection between them, interlacing both disciplines to achieve a common goal.

This duality between computer science and mathematics was also reflected in the combination

of both theory and practice, which characterizes my way of understanding science and, as the reader

will later see, this work. In particular, starting from the abstraction of generating functions we

will proceed to the more application-oriented algorithms to finish with an application in genetics.

Furthermore, mathematics provided me the possibility of starting from the very beginning. If

one does research in real systems such as biology or economics, several questions will arise without

never getting to the base of the system due to the number and complexity of the elements in

those systems. In mathematics, instead, if something can be proved, one can always go back and

understand it from the axioms. In this sense, I wanted to understand the proofs of my work to the

1



2 LIST OF ALGORITHMS

least detail and mathematics was the only discipline that enabled me to do that. For this reason,

some references to the basic results are done during the work, since I have proved it all from there,

although it is not the aim of this work.

Last, but not least, I also wanted it to be an intellectual challenge and the difficulty of under-

standing and manipulating generating functions was a very good option. Moreover, the possibility

of building my own algorithms was a great opportunity to develop an intellectual creativity.

Questions and objectives. The main questions and objectives of this work arise from the

following observation. English, Catalan, binary system found in computers, the genetic code and

even music share one thing in common: they all have an alphabet. My main objective was to

analyze words from a mathematical point of view as well as from the algorithmic perspective. Given

a finite and uniform alphabet ( meaning that each possible sign appears with equal probability );

although at first it may not seem so, some patterns have a greater probability of appearing than

others, depending on its own symmetry. Take, for example, the pattern 11 and 10 and binary

words of length 4:

0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111

Words with 11: 0011, 0110, 0111, 1011, 1100, 1101, 1110, 1111. Thus, it appears in 8 words and 12

times in total, for example in 1111 it appears 3 times. Words with 10 are the following ones:

0010, 0100, 0101, 0110, 1000, 1001, 1010, 1011, 1100, 1101, 1110.

Thus, it appears in 11 words and 12 times in total.

It is not difficult to see that the results for 00 should be the same as 11, because sign ’0’ and

’1’ are essentially the same. Similarly, 10 and 01 should have the same results as well. Therefore

the only thing that influences the probability of a word of appearing in a text only depends on the

geometry/symmetry of this word, as we will later see in this introductory chapter.

In general I was interested in one main question:

Research Question 1: Given a finite alphabet and a finite pattern in this alphabet,

how can we find how many words of a given size contain this pattern?

However, I was not only interested in this question, but also in finding if this geometry affected

the way we searched for patterns in big texts. I already knew a very simple algorithm to find
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patterns in texts, but finding faster and more interesting algorithms became another objective in

my research.

Moreover, an interdisciplinary research can be very helpful and deeper than doing it in only

one part of science; as it was the case in this particular work. Both parts are build one over the

other, as information in one part created insightful questions for the other part and helped solving

some others in this other part.

We could generalize the objective of this second part in another question:

Research Question 2: How can we build an efficient search algorithm using the

information we have about the symmetry of the pattern we are looking for?

As in every research, some other questions arose when trying to answer these very big questions;

some of them were necessary to solve these initial questions, some of them were not, but still were

worth of notice and solving.

A very big difficulty of a mathematical paper is that to do new research one has to have a very

deep knowledge of the theme his investigating. For a high school student this implies the necessity

of learning a lot before starting its research. However, answering my own questions, proving

the theorems I encountered and trying out different examples in every theme of the

student was a research in itself. In fact, all but one theorems were proved by the author entirely,

which represents a huge proportion of the theorems in the work.

It was, in fact, very interesting to see how questions I asked myself and solved them were found

later in other papers or books such as finding an algorithm to determine if a text contains either

of two patterns or finding the average number of steps of the naive algorithm, that will later be

analyzed. Another important example would be the final application, as I thought genetics could

be the perfect application with its big texts and small alphabets. However, my initial idea had

already been done, which at the same time made me sad but also showed that analyzing genetics

was a good idea.

Apart from those questions and the multiple others that would arise I also wanted to apply

the knowledge of those two questions into a more practical application in genetics,

but I would want to remark that this became an extra part of my research and thus it does not

pretend to give clear and proved results but a taste of what could be done. At the same time, the

development of an automatic solver became one of the main objectives, even without

realizing its importance beforehand.
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Finally, it was also of great importance for me to make an authentic experience out of

that research, as it will now be explained.

Personal experience Instead of starting at the end of the first trimester of 1r de Batxillerat

(11th grade) I started working at the end of 4t d’ESO (10th), providing me a much longer, and

needed, span to work. Learning generating functions had a lot of difficulties, and I spent months

only to understand the subject, meeting regularly with Dr. Juanjo Rué, a researcher who intro-

duced me to the topic and guided my learning.

When I was in 1r de Batxillerat I did two other research studies for the program Joves i

Ciència, one of them about fractals and the other one was a simulation of a galaxy. After finishing

the researches for that program, I considered using one of them as a good solid base of my work

for the school; but, I decided not to, for the experience of doing it. Although they were done in

very different topics, the difficulties and experiences I had with both were very useful to learn how

to handle this project.

The summer before 2n de Batxillerat, I was accepted in an intense math program in Ohio

State University for two months, learning a whole new vision of math, proof and the art of thought

in general. More precisely, it also helped me greatly in some proofs that appear in Chapters 3 and

7.

I spent only 1 week in Spain before going back to Boston for a school exchange. This experience

also helped me indirectly, with the Abstract Algebra class and specially by improving my English,

which will later be treated. After going back from Boston I worked intensively at the end of the

first trimester which provided me the opportunity of taking a break during winter vacation and

concentrate in some sections which were more creative at the start of the second trimester.

As I mentioned, doing the document in English was an important part of it; my motivations to

do so were the challenge it supposed, the learning I could get from it, and the internationality and

flexibility it gave to the transcript since nowadays almost all research is done in English. Looking

backwards, although I have had some difficulties with the language, it was a perfect opportunity

to practise it.

For this research I had to learn another language, LATEX, a special text editor used by many

professional scientists and mathematicians around the world. Although it is a quite complex and

non-intuitive language compared to Word and Open Office (my first two tries), after the first two

months of learning, it was a good experience. It gave a perfect editor of mathematical notation

(specially important in this work), a neat presentation and a good system of citations, references
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and structure which I hope the reader will appreciate. Related to this, I really appreciated the

possibility of working closely with a researcher in mathematics, Dr. Juanjo Rué, which provided

me an insight of how mathematical research is.

On the other hand, the computer science part and specially the application in biology were

done without any supervisor. In this case, the reader should take the biological application more

like an overview of what could be an actual research, than a serious research itself; adding the

bigger picture that I wanted to include to this study.

Finally, those last months I have discussed my research with different people, since I wanted

to improve the comprehensibility of the study by learning the points that were more difficult to

understand. I would like to highlight a presentation I gave in front of 4 mathematicians/engineers,

with my two tutors Mrs. Laura Morera and Dr. Juanjo Rué and Llúıs Vena and Txema Tamayo,

this last winter and a later talk with Ms. Esther Silberstein; both being very special experiences.

They were a perfect moment to see the possible doubts that the research could have in understand-

ing. They were also a good practice for a presentation of the study and an opportunity for me to

get my ideas clearer, as one always understands better things when it has to explain them.

All in all, those different things made my research more than a simple work becoming a

personal experience through almost two years.





Chapter 1

Basic combinatoric tools

A key to understanding the complex and unknown is a deep understanding of the simple and

familiar. Burger and Starbird

1.1 Description of combinatorics

Before starting our work we should define the field we are working on, combinatorics: the British

Encyclopedia [20] defines it as ”Branch of mathematics concerned with the selection, arrangement,

and combination of objects chosen from a finite set”. More precisely we are going to focus in fields

like enumerative combinatorics (counting the structures of a given kind and size) and combinato-

rial designs: constructing structures that meet those criterion. Finally we will be using the strong

connection there is between combinatorics and computer science in analysis of algorithms to do

the second part of the study. Thus, it is very important to have a solid combinatoric base. Com-

binatorics is a very broad subject, from basic formulas every high school student knows to very

powerful and complex tools such as generating functions. However, we cannot really understand

the latter without the first, so it is very important to start with the most basic things.

In this chapter, we will start by analyzing simple formulas and providing an explanatory proof

and an example for each. After this, we will consider linear recurrences by showing how to obtain

a formula from them and also providing some examples.

7
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1.2 Basic combinatoric operations

1.2.1 Permutations with repetitions

Imagine you throw a dice n times, how many possibilities are there? If you throw it only

1 time there are only 6 possibilities: 1,2,...,6. If you throw it 2 times the possibilities are:

11, 12, ..., 16, 21, 22, ..., ...26, ... etc until 66; therefore there are 36 possibilities because we have

6 possibilities for the first number and 6 possibilities for the second. Note that repetitions are

allowed since you can have two consecutive 1’s when you throw a dice. Then for 3 throws you will

have 216 possibilities and in general for ’n’ throws you will have 6n different possibilities. Note

that here, two sequences A and B are different if and only if there exists an i such that Ai ̸= Bi.

Another example could be the number of ways to make ’n’ steps in a binary tree: for each

step you can either go to the left or to the right, therefore you end up with 2n possibilities. Finally

consider decimal numbers of n digits. For each digit there are 10 possibilities thus having 10n

possibilities for a n-digit number.

In general this will mean: A×A×
n

××× A, thus the size will be |A|n.

1.2.2 Permutations without repetitions

Now suppose you have n different people in a lane and you want to know how many ways there are

of ordering them. For the first position in the lane you have n options, for the second you have n−1

options because you cannot put a person in both the first and second place. For the third place

you have n− 2 options and so on until for the last place you will have only one option. In general

a permutation without repetition will be of the form: P (A) = A× (A\{a1})× (A\{a1, a2})
n

×××

×({an}).

Thus, in general in a permutation without repetition of n elements there are exactly the

following ways to do it:

|P (A)| = n · (n− 1) · (n− 2) . . . 2 · 1 = n!.

Remember that the notation n! is defined as:

n! = n · (n− 1)! for n > 0, with 0! = 1.
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1.2.3 Combinations without repetitions with order

Consider the different possibilities of the olympic medals in a race of 8 runners. It is clear that

this time order matters, it is not the same to be the gold medal than to be the silver medal. Again

we can use ’the box technique’ to find the formula in a simple way. For the gold medal we have 8

options, for the silver medal we have 7 options because a runner cannot win two different medals in

a race, and the bronze medal has 6 options, therefore the total number of options is: 8 · 7 · 6 = 336.

The general form of a combination without repetitions and with order is:

C(A) = A× (A\{a1})× (A\{a1, a2})
n

××× ×(A\{a1, a2, . . . , am})

In general for n runners and m medals the number of ways is:

|C(A)| = n · (n− 1) · (n− 2) · . . . · (n−m+ 1) =
n!

(n−m)!
.

Although this n!
m! may not seem very clear we can see it in a mathematical way as the following.

Consider n! and m!, then: n! = n · (n− 1) · . . . · (n−m+ 1) · ·(n−m) · (n−m− 1) · . . . · 2 · 1 and

(n−m)! = (n−m) · (n−m− 1) · . . . · 2 · 1.

Therefore n!
(n−m)! will be the terms that appear in n! but do not appear in m! giving us exactly

what we want. We can also use the permutations without repetitions to explain the formula:

Consider the n! ways of ordering the runners. However, for our purposes we will not care about

the order of the last (n−m) runners and thus each element will be repeated (n−m)! times; thus,

we have to divide by (n−m)!.

1.2.4 Combinations without repetition

A captain has to choose k soldiers from the n soldiers available to make a guard for the night.

Obviously we cannot repeat any soldier and the order does not matter. We can use the box system

again to show the formula in this case: n options for the 1st soldier, n− 1 for the 2nd... n− k + 1

for the kth which we determined to be n!
(n−m)! However now we do not want to repeat equal ways

of doing the guard for the night, for example ABC=BCA=CBA. In fact we counted m! every

solution (we can determine it with the permutations without repetition we did previously). Hence,

the solution is:
n!

(n−m)!m!
=

(
n

m

)
.

We can generalize it to k groups of sizes a1, a2, . . . , ak, and thus
∑k

i=1 ai = n. Given this, then the

number of ways to put n elements into those k groups is:

n!

a1!a2!a3! · · · ak!
.
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Those type of numbers are called multinomials. Note that, although it may not seem so, they must

all be integers because they are counting things.

1.2.5 Combinations with repetition

Imagine you have to choose the flavor of the balls of your giant ice cream. There are k flavors

and n balls in your ice cream. It does not matter much the order in which they put them in your

ice cream as long as you have them. This example is probably conceptually the hardest and we

cannot use the box technique since the number of options in each box is dependent on what it has

been put in the previous boxes. However we can use another approach which we will call ’points

and sticks’ algorithm[7]:

1. Draw n+ k − 1 points.

2. Convert k − 1 points in sticks.

3. You will have n points separated in k groups by k − 1 sticks.

For example consider 8 balls of 3 flavors: banana, chocolate and vanilla:

1. Draw 12 points

2. Convert 2 points for sticks

3. the number of points before the first stick is the number of banana balls, between the 2 sticks

is the number of chocolate balls and after the 2nd stick is the number of vanilla balls.

One can now identify the situation: we have to choose the k points we want to convert into sticks

from the n+ k − 1 points without order, the example explained just above. The formula is then:(
n+ k − 1

k

)
.

1.2.6 Some theorems following from the formulas

Using the definitions we showed we can prove some very useful and interesting theorems.

Theorem 1.2.1
n∑

k=0

(
n

k

)
= 2n. (1.1)
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Proof: Every
(
n
k

)
counts the number of ways to take k elements out of the n elements. If we do

it for every k between 0 and k we are analyzing any subset of the n elements since every subset

will consist in taking k elements for 0 6 k 6 n. At the same time 2n also counts the number of

possible subsets of a set of n elements since for each element we have 2 possibilities, putting it in

the subset or not. Therefore, since they count the same thing, they must be equal. �

Theorem 1.2.2 Binomial theorem:

(a+ b)n =

n∑
i=0

(
n

i

)
aibn−i.

Proof: First note that (a + b)n is equivalent to (a + b)(a + b)
n· · · (a + b). We will obtain each

coefficient by multiplying a or b from the first parenthesis, a or b for the second one, etc. Thus,

the coefficient of a plus the coefficient of b always have to add up to n. Moreover, the number

of coefficient aibn−i should be equal to the number of ways to choose i elements from n elements

since you are simply choosing i parenthesis from the n possible.

�
This provides another very simple proof of Theorem 1.2.1:

Proof: If one takes (1 + 1)n by the binomial theorem we have:

(1 + 1)n =
n∑

i=0

(
n

i

)
1i1n−i.

We can now eliminate the 1, getting:
n∑

i=0

(
n

i

)
and knowing that (1 + 1)n = 2n we get:

n∑
i=0

(
n

i

)
= 2n.

�
Again, using binomials we can prove that

n∑
k=0

(
2n

2k

)
=

n−1∑
k=0

(
2n

2k + 1

)
and

n∑
k=0

(
2n

2k

)
= 22n−1

as we find at the end section 9.2. Those are maybe more a little bit more interesting results, but

not so well known; however they will also later be used for the study of algorithm efficiency.
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1.3 Recurrences

1.3.1 Introduction to recurrences

However, there are a lot of problems that are not so standard and it is very difficult, if not

impossible, to find a formula based on those general formulas showed previously. A very useful

tool are recurrences. Recurrences work very well in cases in which knowing small cases can help

solving bigger cases; for example, when the value of a formula for n − 1 and n − 2 determine the

value for n. A recurrence is then something based in itself, n! is a good example of that. It is very

important to note, however, that they also must have a base case in order for us to get a solution.

Moreover, a lot of times we may know what the recurrence is, but we will not be able to find

it and that is where generating functions will come along.

Let us start with a very simple problem: how many different words of length n over the

alphabet A = {0, 1}?

Let this number be Bn. We can easily see that if we have a word of length n−1 we could form

two different words by adding either 0 or 1 at the end of the word. Moreover, these two words will

be different from others as they will have a different beginning. This brings the first recurrence

relation:

Bn = 2 ·Bn−1.

However, we seek an explicit formula for each n. To solve recurrences we find the characteristic

polynomial: first we pass all the terms to one side of the equation:

Bn − 2 ·Bn−1 = 0.

We then change each term Bn by xn, giving:

xn − 2 · xn−1 = 0

We divide by the lowest term and solve for x, obtaining that x = 2.We then know that the formula

will be some power of 2 times a constant. As it is a recurrence of degree one (meaning that we can

form a term only knowing the previous one) we will only need one constant. It has to match for

every n, so any particular case could tell us the constant. Take for example B1:

B1 = 21 · C = 2.

We then know C = 1 so in general:

Bn = 2n · 1 = 2n.
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However, there is a much more intuitive solution to find that Bn = 2n:

Bn = 2·Bn−1 = 4Bn−2 = 23Bn−3 = . . . From this, we could continue expanding the expression

getting always something of the form 2iBn−i. However, we know that B0 = 1 because there is only

one empty word. Thus Bn = 2nB0 = 2n.

For a deeper comprehension it is more useful to set more complex examples.

Consider again words only with 0s and 1s, but add the restriction that no word can have the

substring 01 in it. Let us call Un the number of sequences that satisfies these properties and end

with 1 and Zn the number of sequences that ends with 0. We can easily define two recurrences:

Un = Un−1 we require that the previous letter is a 1, otherwise it would be 01.

Zn = Zn−1 + Un−1 with a 0 at the end we do not have such problem.

Then the total number of words of length n is:

Tn = Un + Zn

Now we can look at Un = Un−1 and it is easy to see that Un = U1 = 1 for every n. Then:

Zn = Zn−1 + 1, we can easily see that Zn = n without doing the characteristic polynomial, so

Tn = n + 1. In fact we can see that the number of words is very restricted, once we put a 0 we

are obliged to end the word in a sequence of 0s or otherwise we would create the pattern 01, as an

example those are the 6 words of length 5:

11111, 11110, 11100, 11000, 10000, 00000

Now consider the restriction of the pattern 11: Consider again two recurrences On and Un for

endings in 0 and 1 respectively. Zn = Zn−1 + Un−1 since there are no restrictions in substrings

ending in 0.

Un = Zn−1 since we have the restriction of the patter 11.

Now we observe:

Zn = Zn−1 + Un−1 = Zn−1 + Zn−2

Tn = Un + Zn

Substituting we get: Tn = Zn + Zn−1 and we can see Tn = Zn+1.

We recognize the Fibonacci recurrence, a very classical one:

Fn = Fn−1 + Fn−2

We can do the same obtaining the following characteristic polynomial:

x2 − x− 1 = 0
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with solutions x = ϕ and x = ϕ where ϕ = 1+
√
5

2 and ϕ is its conjugate: 1−
√
5

2 . We then know that

the formula for the nth Fibonacci number should be of the form:

c1 · ϕn + c2 · ϕ
n

Now we need two equations to solve for two variables, that is why the well known Fibonacci

sequence has its two first terms predefined. We define F0 = 0 and F1 = 1 having the following

equations:

c1 + c2 = 0, and c1 · ϕ+ c2 · ϕ = 1

which give the solution c1 = + 1√
5
and c2 = − 1√

5
and finally giving the formula for the nth Fibonacci

number:

Fn =
ϕn − ϕ

n

√
5

.

If we observe further, this formula also gives us more inside about the sequence: Knowing that

|ϕ| ≈ | − 0.618| < 1 we can determine:

lim
n→∞

ϕ
n
= 0.

which implies

lim
n→∞

Fn ≈
ϕn

√
5
.

And so,

lim
n→∞

Fn

Fn−1
≈ ϕn.

That is why we can approximate the golden proportion by dividing two consecutive Fibonacci

numbers. Due to its properties, Fibonacci numbers appear a lot in art (such as in Ancient Greece)

and nature.

1.3.2 The characteristic polynomial

Now we want to make a general solution for types of recurrences similar to the ones we have seen.

To do that we will test solutions of the form An and see if they can work. Note: for this part

the author inspired its proofs in [7], but adding a personal touch or change to each proof when not

completely changing it. Using the trick of the characteristic polynomial it is very important to

prove it. We start with a simple proof applicable to one of the previous cases.

Theorem 1.3.1 Given a recurrence of the form fn − c · fn−1 = 0 for n>1 the explicit formula is

of the form: fn = f0 · cn−1.
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Proof: We will approach it by induction.First we check the case for n = 1:

f1 = A · c1−1 = a · c0 = A

which is true Now we want to prove that if f(n) satisfies the formula then so does f(n+ 1).

fn+1 = c · fn = c(A · cn−1) = c(A · cn− 1) = A · cn.

We have then showed that it works for every positive integer. �

We now want to proof another theorem applied more than once before:

Theorem 1.3.2 We can get a formula for a recurrence of the form an − c1 · an−1 − c2 · an−2 = 0

Proof: Again we suppose that the solution will be the solution to some sort of polynomial:

fn = x2 − c1x− c2 = 0

Two cases appear: fn = (x− α)2 or two roots: fn = (x− α)(x− β)

Case 1: fn = (x − α)2 We now try to find some simple polynomials that satisfy the recurrence

an = A · αn.

A ·αn −A ·α(n−1) −A ·α(n−2) = Aα(n−2)(α2 − c1α− c2) and α2 − c1α− c2 obviously satisfies the

recurrence so it must equal 0 which implies Aα(n−2)(α2 − c1α− c2) = 0, satisfying the recurrence.

We can find another polynomial that satisfies the recurrence, Bnαn:

Bnαn − c1B(n− 1)αn−1 − c2B(n− 2)αn−2 = Bnαn−2(α2 − c1α− c2) + Bαn−2(c1α+ 2c2) again

we use the fact that α2− c1α− c2 satisfies the recurrence to know that the first term is 0. Now we

analyze: Bα(n−2)(c1α+ 2c2).

Since α(n−2) ̸= 0 because α ̸= 0 then we need: c1α+ 2c2
.
= 0

Remember that case 1:x − c1x − c2 = (x − α)2 = x2 − 2xα + α2. In other words, c1 = 2α and

c2 = α2.

c1α+ 2c2 = (2α)α+ 2(α2) = 2α2 − 2α2 = 0 Thus Bnαn also satisfies the recurrence.

We now use the theorem that if P and Q satisfy a recurrence so does P+Q to know that

fn = a′n + a′′n = (A+Bn)αn satisfies the recurrence.

Based in the last two values, it is clear we only need the first two to define the recurrence, let

us put them in our polynomial form.

f1 = (A+B)α
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f2 = (A+ 2B)α2

Doing a little bit of tedious algebra we get:

A =
2αf1 − f2

α2

and

B =
f2 − αf1

α2

Note that since α ̸= 0 we have determined a formula for the recurrence of the form: (A+Bn)αn

Before going to the next case a question, that the reader may have already noticed, arises:

why cannot we have a formula of the form Aαn or Bnαn if those polynomials also satisfy the

recurrence?

f1 = Aα

f2 = Aα2

As we can see, this would imply f2 = f1α which is not always the case.

f1 = Bα

f2 = 2Bα2

This would imply f2 = 2f1α which is not always the case either.

Case 2: fn = (x−α)(x−β) For the previous case we proved that Aαn satisfied the recurrence

without using any particular fact of the roots of the polynomial. Bβn must also satisfy the

recurrence because it is only a change of variables and then so does their sum: Aαn +Bβn.

Let us try to get A and B from f1, f2, α and β as we did in case 1:

f1 = Aα+Bβ, f2 = Aα2 +Bβ2

Again, we can solve for A and B:

A =
f1β − f2
α(β − α)

, B =
f1α− f2
β(α− β)

We could show that Aαn cannot be a formula for all the recurrences of that form as we did in case

1.

Here we could add an interesting point, as in a lot of mathematical calculations it is sometimes

much easier starting with 0 instead of 1.

Let gn = fn + 1, then g0 = f1 and g1 = f2.

g0 = A+B



1.3. RECURRENCES 17

g1 = Aα+Bβ

which looks much easier to solve but gives a similar result. �

1.3.3 Failure of recurrences

Now we have shown a very powerful tool to solve combinatoric problems. We started with some

basic formulas and we continued with recurrences for more complicated cases. However, there are

some problems that we cannot solve with recurrences. Those need a similar structure for every

step, in other words: the step from n to n+ 1 is the same as the step from n+ 1 to n+ 2. In the

11 problem we solved with Fibonacci, the rule is always the same and does not change.

Take now for example a much more complicated case: triangulations. For us, triangulating

a polygon means dividing the polygon all into triangles, without interior points, interior polygons

different than a triangle or any crossing between lines (which implies that the polygon must be

convex).For example the triangulations in Figure 1.3.3 are invalid, while figures in the Figure 1.2

are valid.

Figure 1.1: Wrong triangulations

As you can see in Figure 1.3 to triangulate Fn we first fix a first edge and then another point.

For the point we have in total n − 2 options. As the figure illustrates, we can fix a point and get

the triangulations we have fixing the triangle. Let m be the position of the point counting from

counter-clockwise direction from the left point of our starting edge, then there are m − 1 points
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Figure 1.2: Valid Triangulations

Figure 1.3: Calculating triangulations

between them creating a polygon of size m+ 1. From the clockwise directions they are n−m− 1

points, which create a polygon of size n−m+1. Therefore we have for each point Tm+1 · Tn−m+1

triangulations giving the following recurrence:

Tn =
n−2∑
m=1

Tm+1 · Tn−m

However, for non-linear recurrences like this one, no closed formula can be found with the methods

we explained. A more general and complex structure is needed, generating functions.



Chapter 2

Introduction to generating

functions

By relieving the brain of all unnecessary work; a good notation sets it free to concentrate on more

advanced problems, and, in effect, increases the mental power of the race. Alfred North

Whitehead

Once we showed the failure of basic combinatorial tools to solve specially complex combinatorial

problems it is necessary to introduce a new mathematical object. Although this object will be used

mainly for combinatorial purposes it has to be previously well defined and with certain properties

proved. Those definitions and properties will be shown and proved in the first part of the chapter

while in a second part of the chapter we will prove some famous theorems of calculus or trigonometry

using generating functions to both show their utility and how they work.

Note: All the theorems shown in the chapter are entirely done by the author. Moreover, more

than once we use properties of the integers which, although obvious, have also been proved by the

author outside this work.

2.1 Definitions

First of all we define what a ring is.

Definition 2.1.1 A ring is a set R equipped with two binary operations +: R × R → R and ·:

19
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R × R → R we call addition and multiplication. This set and two operations have to satisfy the

ring axioms:

(R,+) is required to be an abelian group under addition:

1. Closure under addition

2. Associativity of addition

3. Existence of additive identity

4. Existence of additive inverse

5. Commutativity of addition

(R,·) is required to be a monoid under under multiplication:

1. Closure under multiplication

2. Associativity of multiplication

3. Existence of multiplicative identity

The distributive laws:

1. For all a,b and c in R: a · (b+ c) = (a · b) + (a · c).

2. For all a,b and c in R: (a+ b) · c = (a · c) + (b · c).

A generating function F (x) is a formal power series whose coefficients give the sequence a0, a1, . . ..

As it is added in [3] a generating function can often be thought of as a (possible infinite) polynomial

whose coefficients count structures that are encoded by the exponents of the variables.

Here formal means that we do not substitute the indeterminate for any values, the important

thing are the coefficients.

For example F (x) = 1
1−2x = 1 + 2x + 4x2 + · · · + 2nxn + . . . would count the binary words

of size n because the coefficient of degree n is 2n. Another example of generating function would

be G(x) = 1
(1−x)2 = 1 + 2x + 3x2 + 4x3 + 5x4 + · · · + nxn + . . . which could count the numbers

between 1 and n, both included.

To work with generating functions we first have to define the normal operations we find in

other mathematical objects such as integers or polynomials. We define the sum of two generating

functions similar to the sum of two polynomials:
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Definition 2.1.2 Sum of two generating functions:

A(x) +B(x) =
∞∑

n=0

(an + bn)x
n

Similarly we can define the substraction.

Definition 2.1.3 Substraction of two generating functions:

A(x)−B(x) =

∞∑
n=0

(an − bn)x
n

We can also define one of the basic operations: multiplication.

Definition 2.1.4 Product of two generating functions:

A(x) ·B(x) =
∞∑

m=0

amxm
∞∑
k=0

bkx
k =

∞∑
n=0

n∑
k=0

akb(n−k)x
n.

This means multiplying all possible coefficients that will make the power n. For example for

coefficient 0 only a0b0 is possible; for coefficient 1 a0b1 and a1b0 and for coefficient n = 3: a3b0,

a2b1, a1b2, a0b3, and so on.

Once we have defined those basic operations in this new mathematical object it is very useful

to prove some things about them.

2.2 Basic properties of sum and product of generating func-

tions

2.2.1 Basic operations with generating functions

We now want to prove some useful properties of sums of generating functions. In particular it is

very useful that like other mathematical objects as integers or polynomials, generating functions

form also a ring with addition and multiplication.

Theorem 2.2.1 Generating functions are closed under multiplication and addition:
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Proof: If we take the definitions of addition and multiplication of generating functions we can see

that their output just defines another infinite series of powers, stating what each coefficient will be.

Therefore it is a generating function and they are closed under both addition and multiplication.

�

Theorem 2.2.2 Generating functions are commutative with the sum: A(x) + B(x) =

B(x) +A(x).

Proof: A(x) +B(x) =
∑∞

n=0(an + bn)x
n. Now we use the commutativity of integers

∑
(an + bn)x

n =

∞∑
n=0

(bn + an)x
n = B(x) +A(x).

�

Theorem 2.2.3 Generating functions are associative with respect to the sum: (A(x) +

B(x)) + C(x) = A(x) + (B(x) + C(x)).

Proof:

(A(x) +B(x)) + C(x) =
∞∑

n=0

((an + bn) + cn)x
n.

Now we apply associativity of integers

∞∑
n=0

(an + (bn + cn))x
n = A(x) + (B(x) + C(x)).

�
We could also prove that multiplication of generating functions is both associative and commutative

in a very similar way.

Finally, apart from identities and inverses, which we will prove in the next subsection, we have

to prove the distributive law.

Theorem 2.2.4 Given Generating Functions A(x), B(x), C(x): A(x) · (B(x) + C(x)) =

A(x) ·B(x) +A(x) · C(x) = (B(x) + C(x)) ·A(x)
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Proof:

A(x) · (B(x) + C(x))

∞∑
n=0

(an)x
n ·

( ∞∑
n=0

(bn) +

∞∑
n=0

(cn)

)
.

Now we apply the summation we defined before:

∞∑
n=0

(an) ·
∞∑

n=0

(bn + cn).

Now we apply the multiplication we defined before:

∞∑
n=0

n∑
k=0

ak(b(n−k) + c(n−k)).

We apply distributive property of integers:

∞∑
n=0

n∑
k=0

akbn−k + akcn−k

∞∑
n=0

n∑
k=0

akbn−k +
∞∑

n=0

n∑
k=0

akcn−k

A(x) ·B(x) +A(x) · C(x).

Finally, since we have proven commutativity of generating functions with multiplication we know:

(B + C) ·A = A · (B + C) = A ·B +A · C. �

2.2.2 Identities and inverses

A very important part of a lot of mathematical fields, as group theory or number theory, are identi-

ties/units. For example we know that the identity of addition is 0 and the identity of multiplication

of integers is 1. For instance, we will use the fact that they are both identities in addition and

multiplication respectively to find the identity generating function. First we want to find I(x) such

that:

A(x) + I(x) = A(x) = I(x) +A(x).

Theorem 2.2.5 There exists an identity for the addition of generating functions.

Proof:
∞∑

n=0

(an + in)x
n =

∞∑
n=0

(an)x
n.
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So we need an + in = an − in = an for every n. Since they are all integers we can solve and get

in = 0 for every n. Which is equivalent to say:

I(x) =

∞∑
n=0

(0)xn = 0.

�

Theorem 2.2.6 For every generating function v(x) there exists another generating

function v′(x) such that v(x) + v′(x) = 0

Proof: If we take the negative ( the common name for additive inverse ) of each coefficient of v

we get:
∞∑

n=0

(vn + v′n)x
n =

∞∑
n=0

(vn − vn)x
n =

∞∑
n=0

0xn = 0.

�
For the product we need an I(x) such that:

A(x)I(x) = I(x)A(x) = A(x).

Theorem 2.2.7 There exists an identity for the multiplication of generating functions.

Proof:

I(x)A(x)

=

∞∑
m=0

m∑
k=0

ika(m−k)x
m

=
∞∑

m=0

(i0am +
m∑

k=1

ikam−k).

We need i0 to be 1 and
∑m

k=1 ika(m−k) to be 0 and therefore all ir for r > 0 should be 0. With

this we get that the identity for the multiplication is:

I(x) = 1 +
∞∑

m=1

0xm = 1.

�
Now, although it is not a condition for being a ring, we can look for the multiplicative inverse, if

it exists, of a generic generating function A(x).
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Find B(x) such that A(x)B(x) = 1.

∞∑
n=0

n∑
k=0

akbn−kx
n

We start with the term of degree 0, since it can come only from multiplying degrees that add to 0:

a0 · b0 = 1.

b0 =
1

a0
,

which gets us a condition for a generating function to have an inverse: a0 ̸= 0.

We continue with the term of degree 1: a0b1 + a1b0 = 0. We substitute b0: a0b1 +
a1

a0
= 0.

Now we isolate b1:

b1 =
−a1
(a0)2

Again we have the condition a0 ̸= 0. We do the term of degree 2: a0b2 + a1b1 + a2b0 = 0.

We substitute b0 and b1: a0b2 +
−(a1)

2

(a0)2
+ a2

a0
and now we isolate b2:

b2 =
−a2
a20
− a1

a30
.

Similarly we could continue to get the following coefficients as we prove formally.

Theorem 2.2.8 Every generating function A has a defined inverse provided a0 ̸= 0

Proof: We prove it by induction proving we can get the value of each coefficient. Base case:

b0 = 1
a0

which is well defined when a0 ̸= 0.

Now let us assume we know every coefficient of B up to n − 1, let us prove we can get the n + 1

coefficient.∑n
k=0 akbn−k = 0 for n>0 ( definition of the multiplicative identity ).

a0bn +
∑n

k=1 akbn−k = 0

bn =
−

∑n
k=1 akbn−k

a0
.

Now, provided that a0 ̸= 0, since we know every coefficient of a and every coefficient of b between

0 and n we can calculate bn.

Therefore, we can calculate every coefficient of B and the inverse of every generating function with

a0 ̸= 0 is well defined. �
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2.2.3 Derivatives and integrations

Two other important operations with generating functions are the derivative and integration;

generating functions are roughly speaking as an infinite polynomial so the derivative and the

integration are very simple and easily generalizable.

Definition 2.2.9 Derivative of a generating function A(x):

d
dx

∑∞
n=0 anx

n =
∑∞

n=0 nan · xn−1

We use the notation dn

dxn for the nth derivative in respect to x.

Definition 2.2.10
∫ ∑∞

n=0 anx
ndx = C+

∑∞
n=0

a
n+1x

n+1 where C is an arbitrary constant. Note

that the integration of a generating function, as with a normal function, is defined except for the

constant term.

With derivatives we must prove that some important rules we apply in calculus are valid with

generating functions too.

Theorem 2.2.11 Leibnitz rule for differentiation: d
dx (A(x)B(x)) = A′(x)B(x)+A(x)B′(x).

Proof: First we evaluate the left side of the equation.

A(x)B(x) =
∞∑

m=0

m∑
k=0

(ak ·m−k xm)

(A(x)B(x))′ =
∞∑

m=0

m∑
k=0

m(am · bm−k)x
m−1.

Now we analyze the right side. We first have that:

A′(x)B(x) =
∞∑

m=0

m∑
k=0

(k · ak · bm−k)x
m−1

A(x)B′(x) =

∞∑
m=0

m∑
k=0

(ak · (m− k) · bm−k)x
m−1

Therefore,

A′(x)B(x) +A(x)B′(x) =

∞∑
m=0

m∑
k=0

(k · ak · bm−k)x
m−1 +

∞∑
m=0

m∑
k=0

(ak · (m− k) · bm−k)x
m−1 =
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∞∑
m=0

m∑
k=0

(k · ak · bm−k) + ((m− k) · ak · bm−k)x
m−1 =

∞∑
m=0

m∑
k=0

(ak · bm−k) · (k + (m− k))xm−1 =

∞∑
m=0

m∑
k=0

m · (ak · bm−k)x
m−1.

which if we recall it is exactly the same as the result of the left part. �

Theorem 2.2.12 dn

dxnA(x) if and only if A(x) is a polynomial of degree 6 n

Proof: Let us prove the left sense first:

Let A(x) be c0 + c1x+ c2x
2 + c3x

3 + ...cnx
n, then

dn

dxn
A(x) =

n∑
d=0

cd

n∏
i=0

(d− i)x(d−n).

Now, since n > d for all d’s, there exists an i for every d such that (d− i) = 0. This implies that

the whole product must be zero and thus the summation of the products must be also 0.

Now let us prove the right sense: ∫
dxn

d
0 =

n∑
d=0

cdx
d

d!
,

which as it shown, it has only degree at most n (depending on what ci ̸= 0). �

2.3 Compositions

Another binary operation one can do with generating functions is, as with normal functions, com-

pose them. This means that the result of the first one is the input for the next one:

A(B(x)) would mean: take x and do B(x) and the result plug it into A(x).

There are two specially important questions about compositions and generating functions that

have to be solved.

1. When can we calculate the nth coefficient of a composition, for a fixed n, in a finite amount of

calculations?

2. For what A there exists a B such that A(B(x)) = B(A(x)) = I(x) = x?
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Note that the identity function for the composition is simple I(x) = x since it returns its

input:

I(A(x)) = A(I(x)) = A(x).

Let us start solving the first question:

C(x) = A(B(x)) =
∞∑

n=0

an

( ∞∑
m=0

bmxm

)n

We want that given the coefficients of A(x) and B(x) to get all the coefficients of C(x). Starting

with the constant coefficient:

c0 =
∞∑

n=0

an(b0).

Assuming A has an infinite amount of coefficients this would imply b0 = 0 if we want a finite

number of calculations. Since the converse, B(A(x)), has to satisfy the same properties a0 = 0

also. Let us continue with the degree one coefficient.

c1 =

∞∑
n=1

anb
n−1
0 b1.

b0 = 0 ⇒ (b0)
n = 0 for all n > 0, thus we have c1 = a1b1 which can be always found. Let us

continue with the degree two coefficient.

c2 =

∞∑
n=1

anb
n−1
0 b2 +

∞∑
n=1

anb
n−2
0 b21.

Again we use the fact that bn0 = 0 for all n > 0 to simplify the expression: c2 = a1b2 + a2b
2
1 which

can always be found in a finite number of operations.

We can deduce that we can get cn for all n in a finite number of operations given a0 = b0 = 0.

Without constant coefficients the only possibilities of getting the exponent n is by multiplying

terms which degrees add up to n and since those degrees are positive the list has to be finite.

Thus, the only condition for getting C(x) = A(B(x)) = B(A(x)) is having a0 = b0 = 0.

Now let us solve the second one: for what A(x) there exists a B(x) such that A(B(x)) =

B(A(x)) = I(x) = x?

We can start with the condition of the above question, since we have to calculate the compo-

sition in a finite amount of calculations ⇒ a0 = b0 = 0. Now let us try to get the next coefficients

of B, starting with the linear coefficient:

∞∑
n=0

anb
n−1
0 b1 = 1,

we simplify given b0 = 0 obtaining:

a1b1 = 1
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b1 =
1

b1

And thus,a1 ̸= 0. From now on, the coefficients have to be all of them 0. We continue with the

coefficient of degree 2:

∞∑
n=0

n · anbn−1
0 b2 = 0 +

∞∑
n=0

(
n

2

)
anb

n−2
0 b21 = 0

We use b0 = 0: a1b2 + a2b
2
1 = 0. We can always get it since we have b1 and all the coefficient of a.

Similarly since we know that b0 = 0⇒ bn only depends on bj for j < n and ak, we can get all the

next coefficients of B.

Thus, the only conditions for a generating function to have an inverse is a0 = 0 and a1 ̸= 0.

2.4 Simple forms

As it has been described generating functions are infinite polynomials, which are very hard to

manipulate. However they usually have a much simpler expression, normally as a fraction of

polynomials. Those expressions would be much easier to manipulate and therefore have a great

importance. Let us show some of them.

2.4.1 Powers of 1
1−x

We want to see the following equality between generating functions:

Theorem 2.4.1

1 + x+ x2 + x3 + ... =

∞∑
n=0

xn =
1

(1− x)
.

Proof: In other words, we want to prove that (1-x) is the multiplicative inverse of
∑∞

n=0 x
n.

(1 + x+ x2 + x3 + ...) · (1− x) =

(1 + x+ x2 + x3 + ...)− x(1 + x+ x2 + x3 + ...) =

1 + x+ x2 + ...− x− x2 − x3 − ... = 1.

And consequently the first relation holds. �
Before moving on, we find an application of the multiplication that may prove useful later on.
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Suppose you have a generating function A(x) =
∑∞

n=0 anx
n and you want a new generating

function B(x) with a0, a0+a1, a0+a1+a2, ... as coefficients. Then from the definition of multipli-

cation it is quite clear that multiplying a generating function by the constant generating function

would satisfy this requirement since we need all the coefficients of the other function to be 1. Thus

we have to multiply by 1
1−x , for example:

1

1− x

∞∑
n=0

xn,

(
1

1− x

)2

=

∞∑
n=0

nxn.

We can do a more complex example with powers of 2, to show for example that
∑n

i=0 2
i = 2n − 1:

(1 + 2x+ 4x2 + 8x3 + ...)
1

1− x

As we will later show, this is:
1

1− 2x

1

1− x

1

(1− 2x)(1− x)

We can separate it into two fractions, getting:

1

1− 2x
− 1

1− x
=

∞∑
n=0

(2n − 1)xn.

Then, in general:

1

1− x

∞∑
n=0

anx
n =

∞∑
n=0

(
n∑

k=0

ak

)
xn.

Let us get back to the powers of 1
(1−x)n ,specifically we want to generalize it and find the generating

function for 1
(1−x)n .

We first observe that: ( 1
1−x )

′ = 1
(1−x)2 .

From this it is pretty logical to observe the following powers:

1
(1−x)3 = ( 1

1−x )
′′ · 12

1
(1−x)4 = ( 1

1−x )
′′′ · 1

2·3
1

(1−x)5 = ( 1
1−x )

′′′′ · 1
2·3·4

In general:

1
(1−x)n = ( dn

dxn
1

1−x ) ·
1

(n−1)! .

Now, let us take a look at how the derivatives affect our basic generating function.

1.
∑∞

n=0
d
dx =

∑∞
n=0 n · x(n−1) = 1 + 2x+ 3x2 + 4x3...

2.
∑∞

n=0(
d
dx )

2 =
∑∞

n=0 n · (n− 1) · x(n−2) = 2 + 6x+ 12x2 + 20x3 + ...
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3.
∑∞

n=0(
d
dx )

3 =
∑∞

n=0 n · (n− 1) · (n− 2) · x(n−3) = 6 + 24x+ 60x2 + 120x3 + ...

We generalize:
∞∑

n=0

(

m∏
i=0

(n− i)) · x(n−2).

But
m∏
i=0

(n− i) =
n!

(n−m)!

Therefore:

(
d

dx
)m

∞∑
n=0

xn =
n!

(n−m)!

∞∑
n=0

x(n−m).

We return to: 1
(1−x)m = (( d

dx )
(m−1) 1

1−x )
1

(m−1)! , substituting we get:

1

(1− x)m
=

1

(m− 1)!

∞∑
n=0

(
n!

(n+ 1−m)!
· x(n+1−m)

)
.

Now we can use the definition we gave about binomials in Chapter 1.

1

(1− x)m
=

∞∑
n=0

(
n

m− 1

)
· xn−m+1)

We can also get expressions for generating functions of the form: 1nx + 2nx2 + 3nx3 + . . . . For

example:
x

(1− x)2
= x+ 2x+ 3x3 + · · ·+ nxn + . . .

or
x(x+ 1)

(1− x)3
= x+ 4x2 + 9x3 + 16x4 + · · ·+ n2xn + . . .

A deeper analyze of those generating functions can be found in the Appendix.

2.4.2 Other important simple forms

The way we proved that
∑∞

n=0 x
n = 1

1−x makes one think about how you could create other

generating functions, specially after doing the recurrences in the previous chapter.

One can start playing with the different parts of the simple form and observe what happens

and make deductions.

First of all, the numerator:1. As we proved before for finding the multiplicative inverse of

a generating function the numerator of the simple form must equal the constant term of the

generating function times the constant term of the denominator. As a specific case remember that

a generating function has an inverse if and only if a0 ̸= 0. So for example 2
1−x = 2+2x+2x2+ ... =∑∞

n=0 2x
n and 1

2−x has its first term equal to 1
2 .
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On the other hand, the denominator is also very interesting, as it shows you the relation

between some coefficients of the generating function. Note for example that for 1
1−x to be the

inverse of the constant generating function we needed every term multiplied by x to be the next

one multiplied by 1. Lets change for example the 1 for another number:

1. 1
1−x = 1 + x+ x2 + ... =

∑∞
n=0 x

n

2. 1
2−x = 1

2 + x
4 + x2

8 + ... =
∑∞

n=0
xn

2n+1

3. 1
3−x = 1

3 + x
9 + x2

27 + ... =
∑∞

n=0
xn

3n+1

4. 1
c−x = 1

c + x
c2 + x2

c3 + ... =
∑∞

n=0
xn

cn+1

Now we can analyze the coefficient of the x term:

1. 1
1−x = 1 + x+ x2 + ... =

∑∞
n=0 x

n

2. 1
1−2x = 1 + 2x+ 4x2 + ... =

∑∞
n=0(2x)

n

3. 1
1−3x = 1 + 3x+ 9x2 + ... =

∑∞
n=0(3x)

n

4. 1
1−cn = 1 + cx+ c2x2 + ... =

∑∞
n=0(cx)

n

Note that here we also get the special case with c = −1: 1
1+x =

∑∞
n=0(−1)nxn = 1 − x + x2 −

x3 + x4.... If we continue our train of thoughts we can find a deeper relation: the characteristic

polynomial. Those last generating functions were the geometric series commented on the first

chapter that were recurrences of 1 degree and had characteristic polynomials of the form: x−c = 0.

With a linear recurrence the generating function that has the sequence as coefficients has a simple

form with a the characteristic polynomial of that recurrence as a denominator. Let us put some

examples:

Fibonacci sequence:

1

1− x− x2
= 1 + x+ 2x2 + 3x3 + 5x4 + 8x5 + ...

an = 3an−1 − 4an−2:

1

1− 3x+ 4x2
= 1 + 3x+ 5x2 + 3x3 − 11x4 − 45x5 − 91x6 − 93x7...

In general: if we have:

G(x) =
n0 + n1x+ n2x

2 + · · ·+ nsx
s

d0 + d1x+ d2x2 + · · ·+ dmxm

We know that, if G(x) =
∑∞

k=0 gkx
k, then:

∞∑
k=0

gkx
k · (d0 + d1x+ d2x

2 + · · ·+ dmxm) = n0 + n1x+ n2x
2 + · · ·+ nsx

s.
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Therefore for k > s we have that the kth coefficient of the numerator has to be 0 and thus:

j−1∑
j=0

gj · dj−k = 0

However, for k 6 s we have:
j−1∑
j=0

gj · dj−k = d0 · gk

Which is very similar to the characteristic polynomial of recurrences. Take for example the gener-

ating function:

G(x) =
1 + x+ 2x2

1− 2x− 4x2 − 8x3

Then for k > 2 we have:

gk − 2gk−1 − 4gk−2 − 8gk−3 = 0.

Thus, its will follow the recurrence G[k] = 2G[k − 1] + 4G[k − 2] + 8G[k − 3] for k > 2.

However, for k 6 2 we will have to take into account the numerator.

g0 = 1

g1 − g0 = 1→ g1 = 2

g2 − 2g1 − 4g0 = 2→ g2 = 10

which is equivalent to specify the first terms of a recurrence as we did in the previous chapter. This

technique relates generating functions with recurrences and it will be very useful for calculating

different expressions from generating functions.

2.5 Taylor’s Theorem

A very important theorem for our purposes is Taylor’s theorem (proved in [16, p. 736]) which finds

a connection between analysis and our algebraic expressions: the generating functions. Taylor’s

theorem states the following:

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + ...+

d(n)f(a)

dxn
(x− a)n + ...

This enables us to approximate the value of a function around a point using polynomials. Con-

cretely Taylor states that the Taylor polynomial of a certain degree n given with his theorem it

is the one with that degree that best approximates the function around that point. Also we have

that with an infinite degree, a generating function, we obtain the exact value. A concrete kind of

Taylor series are Maclaurin series which are Taylor series around a = 0.

f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 + ...+

d(n)f(0)

dxn · n!
xn + ...
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2.6 Examples of generating functions

2.6.1 sin(x) and cos(x)

Let,

sin(x) =
∞∑

n=0

(−1)n

(1 + 2n)!
x1+2n

cos(x) =
∞∑

n=0

(−1)n

2n!
x2n

Now that we have both formulas for the functions we can prove some things we use in calculus and

other math fields, starting by proving sin′(x) = cos(x) and cos′(x) = −sin(x), which the reader

will found in the Appendix.

Looking backwards, we can understand the construction of the series, given cos(0) = 1 and

sin(0) = 0. We can get the generating function for sin(x) with the Maclaurin series.

sin(x) = sin(0) + sin′(0)x+
sin′′(0)x2

2
+

sin′′′(0)x3

3!
+ ...

Remember that the derivatives of the sine function can be determined doing mod 4.

dn

dxn
sin(x) =



sinx if n mod 4=0

cosx if n mod 4=1

− sinx if n mod 4=2

− cosx if n mod 4=3

This happens because (−cos(x))′ = sin(x) so a cycle is formed.

Now, since sin(0) = 0 and cos(0) = 1 we get the following fuzzy expression:

sin(x) =
∞∑

n=0

(n mod 2)(−1)((n−1) mod 4)/2

n!
xn

We can do the same for cos(x) with the Maclaurin series.

cos(x) = cos(0) + cos′(0)x+
cos′′(0)x2

2
+

sin′′′(0)x3

3!
+ ...

Again the derivatives of the cosine function can be determined doing mod 4.

dn

dxn
cos(x) =



cosx if n mod 4=0

− sinx if n mod 4=1

− cosx if n mod 4=2

sinx if n mod 4=3
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Again, this happens because sin’(x)=cos(x) forming the cycle.

Now we use again sin(0) = 0 and cos(0) = 1 getting the following expression similar in form to

the cos(x) function:

cos(x) =
∞∑

n=0

((n+ 1) mod 2)(−1)(n mod 4)/2

n!
xn

We can change to get a formula without modulus using the fact that they have infinite coefficients

to restate their values:

sin(x) =

∞∑
n=0

(−1)n

(1 + 2n)!
x1+2n

cos(x) =
∞∑

n=0

(−1)n

2n!
x2n

Apart from Calculus, we can also prove that one of the most basic and useful theorems of geometry

also works for our series.

Theorem 2.6.1 sin2(x) + cos2(x) = 1

Proof: Let us start with cos2(x):

cos2(x) =
∞∑

n=0

n∑
k=0

(−1)k(−1)n−kx2kx2n−2k

(2k)!(2n− 2k)!
=

∞∑
n=0

n∑
k=0

(−1)nx2n

(2k)!(2n− 2k)!

Now we can apply a smart trick, since
(
2n
2k

)
= (2n)!

(2k)!(2n−2k)! ; then
1

(2k)!(2n−2k)! =
(
2n
2k

)
(2n)!.

∞∑
n=0

(−1)nx2n

(2n)!

n∑
k=0

(
2n

2k

)
Here we can use a Theorem enounced in Chapter 1, but proven in the Appendix.

∞∑
n=0

(−1)nx2n

(2n)!
· 22n−1

Now let us do sin2(x):

sin2(x) =
∞∑

n=0

n∑
k=0

(−1)k(−1)n−kx1+2kx1+2n−2k

(1 + 2k)!(1 + 2n− 2k)!

We apply the same trick as before:

∞∑
n=0

(−1)nx(2n+2)

(2n+ 2)!

n∑
k=0

(
2n+ 2

1 + 2k

)
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∞∑
n=0

(−1)nx(2n+2)

(2n+ 2)!
· 22n+1

Now we have:

cos2(x) =
∞∑

n=0

(−1)nx2n

(2n)!
· 22n−1

and

sin2(x) =

∞∑
n=0

(−1)nx(2n+2)

(2n+ 2)!
· 22n+1

Now observe that the term n+ 1 of cos2(x) is − (−1)nx(2n+2)

(2n+2)! · 22n+1 which is the same as the term

n of sin2(x) but with the negative sign. Therefore, every nth term of cos2(x) will be canceled by

the term (n − 1) of sin2(x) and only the term 0 of sin2(x) will remain, which is (−1)0x0

2! · 21 = 1.

Therefore:

cos2(x) + sin2(x) = 1

�

2.6.2 ex and ln(x)

Let:

ex =
∞∑

n=0

xn

n!

ln(x) =
∞∑

n=1

−(1− x)n

n

which can be rewritten as:

ln(1− x) =
∞∑

n=1

−xn

n

From this we can prove that ex is the function that has its derivative equal to itself with e0 = 1.

(ex)′ =
∞∑

n=1

nxn−1

n!
=

∞∑
n=1

xn−1

(n− 1)!

If we rename n− 1 to be n we get,
∞∑

n=0

xn

n!
= ex

As we have done with the ex function we will find the derivative of ln(x):

(ln(1 − x))′ = (
∑∞

n=1
−xn

n )′ =
∑∞

n=0
−nxn

n =
∑∞

n=0−xn. We recognize the negative of the basic

generating function.

= −1
1−x . It would be also interesting to show that eln(x) = ln(ex) = x.

Theorem 2.6.2 ex is the inverse of ln(x)



2.6. EXAMPLES OF GENERATING FUNCTIONS 37

Proof: To do it we will use the Chain Rule, proved in [16, p. 203]. We will start proving

eln(1−x) = 1−x. To do it easier, note that we have a bijection between x and 1−x. Ergo, proving

it for 1− x is the same as proving it for x.

eln(1−x) = 1− x.

(eln(1−x))′′ = (
eln(1−x)

x− 1
)′ =

eln(1−x)

(x− 1)2
− eln(1−x)

(x− 1)2
= 0.

Now we apply one of the previous lemmas that dn

dxnA(x) = 0⇒ A(x)is a polynomial of degree6 n.

So we can conclude that eln(1−x) is a polynomial of degree 6 1, thus of the form Ax+B where A

and B are constants. Now take the first derivative, which we know it is equal to A:

eln(1−x)

x− 1
= A.

eln(1−x) = Ax−A.

Thus B = −A.

Let us find the constant term of: eln(1−x) =
∑∞

n=0(
∑∞

m=1
−xm

m )xn.

The constant term can only appear with n = 0 otherwise it would have an x. Since (
∑∞

m=1
−xm

m )0 =

1 the constant term is 1 so B=1 and A=-1, thus:

eln(1−x) = 1− x

Thus, eln(x) = x. Now we will prove the other direction: ln(ex) = x. We can again do the second

derivative of ln(ex):

(ln(ex))′ =
1

ex
· (ex)′ = ex

ex
= 1.

We can do the second derivative getting:

(ln(ex))′′ = (1)′ = 0.

Thus, from Theorem 2.2.12 we know that ln(ex) = x + A in which A is the constant term of

ln(ex). We can now substitute by the generating functions we had for both functions:

ln(ex) =

∞∑
n=1

−
−(1−

∑∞
m=0

xm

m! )
n

n

For
∑∞

m=0
xm

m! the only constant term will appear when m = 0 having 1
1 = 1, thus we have that

the constant part of ln(ex) is:
∞∑

n=1

−−(1− 1)n

n
= 0.

Therefore ln(ex) = x. Having proven both directions we can now say that ln(x) is the inverse of

ex. �



38 CHAPTER 2. INTRODUCTION TO GENERATING FUNCTIONS

2.7 Chapter conclusions

In this chapter we have proved a lot of important things about generating functions such as the

fact that they are a ring. Those facts will be used constantly in further chapters, as will be simple

forms. Moreover we have also showed some applications of generating functions and examples of

how to manipulate generating functions.

In further chapters, however, generating functions will mainly be used for combinatorial pur-

poses. For instance, in the next chapter, will be an introduction to the use of generating functions

in combinatorics, which can now be done since the object is correctly defined.



Chapter 3

Generating functions for

enumerative combinatorics

In modern mathematics, algebra has become so important that numbers will soon have only

symbolic meaning.

After this introduction we get back to our starting problem:

How many words of a determined size contain a given pattern P?

Now that both the introduction to both combinatorics and to generating function are done it is

time to merge both of them to solve this problem. We will first define some terms which are

necessary for our work and the different equivalences we can find between generating functions and

combinatorial operations. Then we will solve different combinatorial problems to show how to use

the different combinatorial operations and equivalences and the power generating functions have

with respect to the basic combinatorial tools shown in the first chapter.

3.1 Definitions

A combinatorial class is a pair (A, |∆|) such that A is a finite or infinite denumerable set and

|∆| : A → N is a size function such that, for all n > 0, An = {α ∈ A||α| = n} is finite. Thus,

knowing something about one set in the equivalence class can be useful to the other sets in the

class.

39
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Particularly, we are interested in pairs (A, | · |) where A is a set and | · | is a function, which we

will call ’size’, which goes from the particular A to the positive whole numbers; moreover, these

numbers have to be finite. In this case, we will call the combinatoric class admissible and write an

for the number of elements in A with size n.

With this hypothesis we can define an ordinary generating function associated to (A, | · |) with

a formal power series:

A(x) =

∞∑
n=0

anx
n.

Note that the number of elements in A can be infinite, since the elements can have any positive

size, but given a size the number of elements in A with that size must be positive.

We will also write An for the subset of elements of A with size n. In particular, the cardinal

of An, |An|, is equal to an. Thus,

A(x) =

∞∑
n=0

|An|xn

Take the example of the set B of binary words without any restriction and consider as size the

longitude of the word. We show in the first chapter that the number of binary words of length n

is 2n because for each position in the word you can choose a 0 or a 1.

2n is a whole number for n whole; moreover, it is positive and finite; therefore it is an acceptable

combinatorial class. We can associate to it the generating function:

W (x) =

∞∑
n=0

2nxn =
1

1− 2x
= 1 + 2x+ 4x2 + · · ·+ 2nxn + . . .

3.2 Multivariable generating functions

Quite often, we may also be interested in studying particular parameters in these combinatoric

classes. In a more rigorous form: given a combinatoric class (A, | · |), let χ : A→ N a parameter.

To solve this, we use an auxiliary variable to take into account this parameter giving multi-

variable generating functions (MGF).

A(u, x) =
∑
a∈A

x|a|uχ(a).

Theorem 3.2.1 A(1, x) = A(x)

Proof: A(1, x) =
∑

a∈A x|a|uχ(a)

=
∑

a∈A x|a|1χ(a)
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=
∑

a∈A x|a| · 1

=
∑

a∈A x|a| = A(x). �
Take for example the function W (u, x) where u points the number of 1’s and x counts the total

size of the word. As we will see later in the chapter this function is simply: 1
1−ux−x . Take u = 1

and you get: 1
1−2x which we showed to be W (x). In fact, multivariable generating functions will

be used later in a similar example.

3.3 Symbolic method

The Symbolic method provides a framework to translate combinatorial constructions between com-

binatorial classes to equations, most of them algebraic between the associated generating functions.

In what follows we will present the methodology to apply these ideas by showing in each generic

case the translation between the two worlds, the combinatorial one and the algebraic one.

3.4 Basic constructions

Empty class

We simply define a special but important class: (∅, | · |), where we assume |∅| = 0, which we will

call the empty combinatorial class.

Units

Very often we have to work with units, for example in case of binary words 0 and 1 would be two

units of size 1 ( because they increase the size of the word by one ). E = (•, | · |), where | · | = 1.

Recall that we may have units of other sizes such as: | · | = 2.

Union

Given two classes (A, |∆|) and (B, |∆|) with A ∩B = ∅. We define C = A ∪B.

Then the size over C is the one from A and B.

It is important to notice that in case A ∩ B ̸= ∅ then we can consider a copy B̃ of B coloring the

objects in a different color. And now consider A ∪ B̃ which is ∅ and then get C = A ∪ B̃.
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Cartesian product

Again, given two classes (A, |∆|) and (B, |∆|), we define the cartesian product of A and B to be

the set A×B = {(a, b) : a ∈ A, b ∈ B)}.

The size of an element (a, b) of A×B is |a|+ |b|.

The combinatoric class that results is called the product from the initial classes.

Sequence

Now, given a single class (A, | · |) we can consider the set:

Seq (A) = ε ∪A ∪ (A×A) ∪ (A×A×A) ∪ ... =

∞∪
r=0

A× r. . . ×A.

This is probably one of the most important operations and at the same time one of the hardest to

understand, so let us explain it carefully with the example of binary words.

In binary words we have two units such as ◦ and • both of size 1. Then the binary words are:

1. The empty binary word (E)

2. The units ◦ and • (A)

3. The words of size two given by the cartesian product: ◦◦, ◦•, •◦, ••, which is (A×A).

4. The words of size three you can get with those two units such as ◦ ◦ ◦ or • ◦ • which is

(A×A×A)

5. etc.

A particular element of Seq(A) it is written as (a1, ..., ak) for a particular natural k and its size

is |a1| + · · · + |ak|. We call this class a sequence generated with its initial class. For restricted

sequences of a subgroup r of naturals we define it as :

SeqR(A) =

∞∪
r=0

A× r∈R. . . ×A

.

Pointing

Given a combinatorial class (A, | · |) we consider the set

A• =

∞∪
r=0

Ar × {ϵ1, . . . , ϵr},
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where each of the ϵi has size 0. This combinatorial construction is interpreted as follows: given an

element a ∈ A of size n it can be interpreted as the union of n atoms (connected in a certain way).

Then with the previous operation we are pointing one of those atoms giving the pointing of the

combinatorial class A.

Substitution

Given two combinatorial classes (A, | · |) and (B, | · |) we define a new set:

A ◦B =
∞∪

n=0

An × (B× n. . . ×B),

called composition of combinatorial classes. This construction can be interpreted as follows: given

an element a of A of size n, we substitute each of its n atoms for an arbitrary element of B. Thus,

the size of the object created is the sum of the sizes of the elements we choose of B.

3.5 Equivalence with generating functions

1. Units Recall that we talked about different sizes of units: in general we can say that a unit

is E represented as x|E|. In particular:

If |E| = 0 then it is represented as 1.

If |E| = 1 then it is represented as x1.

if |E| = 2 then it is represented as x2.

And so on.

2. Union This one it is pretty simple, as in almost every field in mathematics union is addition:

A ∪ B is represented in generating functions as A(x) + B(x). We find the reason in the

definition of union ( adding the elements of a particular size ) and addition of generating

functions to be equivalent.

3. Cartesian product Another classical representation: A × B is represented as A(x)B(x).

To find the reason why it is like this you just have to recall the definition of multiplication

given in the first chapter.

4. Sequence The sequence Seq (A) is represented as 1
1−A(x) . Note that:

(a) The famous 1
1−x is a special case because it signifies the sequence you get with a single

unit of size 1, which is one word for every size.

(b) You cannot have any element of size 0 otherwise there is a double contradiction: there is

no polynomial representation and it is not a combinatorial class since you can compose

infinitely many elements of size 0 giving an infinite amount of size 0 words.
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5. Pointing A• is equivalent to x ∂
∂xA(x).

The derivative must be understood as a formal derivative. It is simply a clever way of

representation:

Notice that we need to multiply the term of size 1 by 1, the one of size 2 by 2 and the

term of size n by n. The differentiation of xn is nxn−1 so by first differentiating and then

multiplying by x we get nxn in each term.

6. Substitution As with union and cartesian product, the definition of composition is the

same as substitution so A ◦ B is represented in generating functions as A(B(x)).

3.6 Basic examples

3.6.1 Natural numbers

Construction of natural numbers We can define the natural numbers as the set 1, 2, ...

with size (|i| = i). We can define this set in terms of the combinatoric class A = • with | • | = 1

as Seq (A) = 1
1−x = 1 + x+ x2 + x3 + ....

In other words, there is a single natural number of every positive whole size.

Coverage of natural numbers with 1’s and 2’s We will do it in two ways.

1. Order does matter We define the combinatorial class A = ◦, • with | ◦ | = 1, | • | = 2.

In generating functions A = x+ x2.

Now simply take:

Seq (A) = 1

1− (x+ x2)
=

1

1− x− x2
= 1 + x+ 2x2 + 3x3 + 5x4 + 8x5 + ...

Note that this is the Fibonacci sequence! The interpretation is the following: each string of

signs of ◦, • must end with one of the two. So the structure will follow the fibonacci recurrence:

Fn = Fn−1 + Fn−2, because we can have Fn by getting a sequence of size n− 2 and adding a • or

having a sequence of size n− 1 and adding a ◦.

2. Order does not matter This one is a little bit more tricky because it involves more than

one operation. We can simply look for ordered string of signs where ◦ must always go before •. To

do that we make two combinatorial classes, the one you get only with ◦ and the one you get only

with •:

Seq (◦) = 1

1− x
= 1 + x+ x2 + x3 + . . .

Seq (•) = 1

1− x2
= 1 + x2 + x4 + x6 + ...+ x2n + . . .
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Now, you can imagine each coverage as all the possible combinations of taking 1 group of all ◦ and

then 1 group of all • after with their sizes adding the given size. But that is simply the definition

of cartesian product!

Seq (◦)× Seq (•) = 1

1− x

1

1− x2
=

1

(x− 1)2(x+ 1)

1

(x− 1)2(x+ 1)
= 1 + x+ 2x2 + 2x3 + 3x4 + 3x5 + . . .

It is important to notice that this notion of order would have been much more difficult with the

previous tools we had of combinatorics and now we have solved the problem in a very simple way.

3.6.2 Binary words counting 1’s

This problem was showed at the beginning of the chapter and now it is also quite easy to show:

Take the combinatorial class B = {′0′,′ 1′}.

We have two types of sizes, x =the size of the word and u =the number of 1’s. Then note

that we have two units: ’0’ which has size x = 1 and size u = 0.

’1’ which has size x = 1 and size u = 1.

Therefore: |′0′| = x and |′1′| = u · x. Now we can simply do the sequence of this:

SeqB =
1

1− x− ux
= 1 + (u+ 1)x+ (u+ 1)2x2 + (u+ 1)3x3 + ...+ (u+ 1)nxn + ...

From that we get that for a particular size of the word m and number of 1’s equal to n the number

of strings with both conditions will be the coefficient with degree of u equal to n in (u + 1)mxm.

Now we can use the binomial theorem to know that the coefficient of degree m will be:(
m

n

)
unxm

3.6.3 Exchange

Concrete example Suppose a machine can only return moneys of 1,2,5 and 20 cents of . In

how many ways can it return n cents? Again we have A = ∗, ⋆, ◦, • with | ∗ | = 1, | ⋆ | = 2, | ◦ | =

5, | • | = 20.

We create all the generating functions as we did with the coverage with 1’s and 2’s:

Seq(∗) = 1

1− x
= 1 + x+ x2 + x3 + . . .

Seq(⋆) =
1

1− x2
= 1 + x2 + x4 + x6 + . . .



46CHAPTER 3. GENERATING FUNCTIONS FOR ENUMERATIVE COMBINATORICS

Seq(◦) = 1

1− x5
= 1 + x5 + x10 + x15 + . . .

Seq(•) = 1

1− x20
= 1 + x20 + x40 + x60 + . . .

Now we multiply all them, since we want 1 group of each:

Seq∗ × Seq⋆× Seq◦ × Seq• = 1

(1− x)(1− x2)(1− x5)(1− x20)

Generalization It is quite simple to see that we can always to the same procedure, so in

general:

A = {a1, a2, ..., an} with |a1| = v1, |a2| = v2, ..., |an| = vn the generating function associated will

be:
n∏

i=0

Seq (ai) =
n∏

i=0

1

1− xi

3.7 More complex examples

3.7.1 Compositions

This problem is in essence, very similar to the coverage of the naturals with 1’s and 2’s, but now

we can use every positive number. So:

A = N

And the associated generating function is therefore:

x

1− x
= x+ x2 + x3 + . . .

Note the importance of the x on the numerator. Without it we would have a problem since the

term of degree 0 would appear and with it there are infinitely many ways of adding every number

since we can always add another 0. Now, as we did last time we can do the sequence of this:

Seq (A) = 1

1− x
1−x

=
(x− 1)x

2x− 1
= x+ 2x2 + 4x3 + 8x4 + ...

Note that every term is of the form 2n−1xn.

We can prove this formula as follows: Imagine a group of n 1’s and put the first 1 in a box.

For the other 1’s you can choose to put it in the same box or start a new box giving a composition

which will be the number of 1’s in each box.

Since you have n− 1 places with 2 options each, the total possible combinations are 2n−1.
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We can also have a graphical visualization by imagining n points with (n− 1) spaces between

them. For each space you can put a bar of separation or not; ending with a list of boxes; again

since we can put or not a bar in each space we have 2n−1 possibilities.

3.7.2 Partitions

Partitions is probably one of the hardest problems of number theory. The first approximation was

done by Hardy and Ramanujan in 1918:

p(n) ∼
exp(π

√
2n/3)

4n
√
3

as n→∞

Some years after, in 1937, a better expression was found by Hans Rademacher using Ford circles,

Farey sequences, modular symmetry and the Dedekind eta function. As you can see the formula

is quite dense:

p(n) =
1

π
√
2

∞∑
k=1

∑
0≤m<k;(m,k)=1

eπi[s(m,k)−2nm/k]
√
k
d

dn

sinh
(

π
k

√
2
3 (n−

1
24 )
)

√
n− 1

24


where s(m,n) stands for the Dedekind sum.

Compared with this complexity we have the approach with generating functions which is simply

the problem of the exchange with A = N so:

P (x) =
∞∏

n=1

1

1− xn

With every nth coefficient giving the number of compositions of n. This is a very clear example of

the power of generating functions in the sense that they make complex things simple.

3.7.3 Triangulations of a polygon

Introducing combinatoric tools we put triangulations as an example of a problem we could not

solve using just recurrences or combinatorial formulas. However, with generating functions this

problem is now solvable, in two different approaches: Looking at triangles we can take an edge

in the n-gon and call it your ’root’ edge. This edge has to have some triangle associated to it; to

complete this triangle a vertex from the rest has to be chosen, as Figure 3.7.3 shows.

This creates both a triangle and two other polygons that will be ’stuck’ to the triangle on its

other two edges. Then, we only have to triangulate those two other polygons. Therefore all the

triangulations having this triangle are the possible triangulations of the first polygon with all the

possible triangulations of the second polygon, as shown in Figure 3.7.3.
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Figure 3.1: Choosing a root edge in the polygon

Figure 3.2: Symbolic structure of a triangulation

Therefore, with the symbolic method, let A be the generating function associated with trian-

gulations then:

A =′ |′ ∪ A×▽×A

Note that is the element of size one, since we have added a triangle and that the unit is an edge,

since this is the base case when in one of the two sides there is not a polygon, then an edge is

stuck. Then we can easily translate this to generating functions:

A = 1 +AxA = 1 +A2x

Which is equivalent for:

xA2 −A+ 1 = 0

Now we can use the quadratic equation which gives us two results:

A = 1+
√
1−4x
2x or A = 1−

√
1−4x
2x . However 1+

√
1−4x
2x = 1

x − 1 − x − 2x2 − 5x3 − ... so this cannot

be the solution since it must have integer positive coefficient and exponents. On the other hand

A = 1−
√
x2+4x
2x = 1 + x + 2x2 + 5x3 + 14x4 + ... so this must be the solution. Note that these

numbers are the famous Catalan numbers of the form: 1
n+1

(
2n
n

)
.
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3.7.4 Decompositions of a polygon in quadrilaterals

As we did with triangulations of a polygon, we can use the Symbolic Method to set up an equation

for the generating function. This time, however we have three different polygons attached to the

quadrilateral, as Figure 3.7.4 shows.

Figure 3.3: Symbolic structure of a Decomposition in quadrilaterals

Therefore we get the following equation in symbolic method:

B =′ |′ ∪ B × B ×�× B.

Which, translated to generating functions is:

B = 1 + B3x,

since, again, the edge is the unit and the square the element of size 1. Again, we can put it as:

B3x− B + 1 = 0 and get the following solutions using the cubic equation:

A1 =
3
√√

3
√
27x4 − 4x3 − 9x2

3
√
232/3x

+

3

√
2
3

3
√√

3
√
27x4 − 4x3 − 9x2

,

A2 = − 1 + ı
√
3

22/3 3
√
3

3
√√

3
√
27x4 − 4x3 − 9x2

− (1− ı
√
3)

3
√√

3
√
27x4 − 4x3 − 9x2

2 3
√
232/3x

,

A3 = − (1 + ı
√
3

3
√√

3
√
27x4 − 4x3 − 9x2

3
√
232/3x

− 1− ı
√
3

22/3 3
√
3

3
√√

3
√
27x4 − 4x3 − 9x2

.

However, again, only the third one has integer coefficients, therefore A = A3 = 1+x+3x2+12x3+

55x4 + 273x5 + ....

3.7.5 Dissections of a n-gon

Finally, the objective is to find the general case: dissections. Dissections are divisions of a convex

n-gon, without any crossings inside the polygon and no condition about the final polygons into
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which the initial polygon is divided.

However, it is impossible to count the number of dissections in term of the number of final

polygons, as we did with quadrilaterals, but we must do it in function of the vertices. Generating

functions must count finite sets and the set of dissections in 1,2 or any other positive integer

polygons is infinite. Take for example dissections into 1 polygon, which is not dissecting anything.

Then, there are infinitely many dissections of this form since we can increase the number of vertices

indefinitely and each different n-gon would be by itself a dissection of degree one, giving infinitely

many solutions.Therefore, we have to do it as a function of the number of vertices.

We can follow the same procedure we did with triangulations knowing that introducing a m-

gon into the n-gon will create m other polygons and will decrease the number of available vertices

by m− 2. The symbolic method representation would then be:

A = |
∞∪

m=2

Am

•m−1
.

Translated into generating functions:

A = x2 +
A2

x
+

A3

x2
+

A4

x3
+ ...

Now, we can do a variation of the classic 1
1−x by doing:

A

1− A
x

= A+
A2

x
+

A3

x2
+

A4

x3
+ ...

Therefore,

A =
A

1− A
x

−A+ x2.

We can solve again for A using the quadratic equation giving A = x2−x
√
x2−6x+1+x

4 or A =

x2+x
√
x2−6x+1+x

4 . It turns out that the one with positive coefficients is A = x2−x
√
x2−6x+1+x

4 =

x2 + x3 + 3x4 + 11x5 + 45x6 + 197x7 + ...

3.8 Chapter remarks

With this, we have shown the power of generating functions and the symbolic method by solving

some very hard problems that were unapproachable using recurrences. However, there is still no

clue about whether the symbolic method could be used to get generating functions for words, and

how to do it.



Chapter 4

Introduction to string matching

algorithms

If 90% of the ideas you generate aren’t absolutely worthless, then you’re not generating enough

ideas. Martin Artin

4.1 Connection with generating functions

In the first part of our research we have developed a series of mathematical tools to solve combi-

natorial problems, from the simplest ones using formulas to some very complex ones as dissection

of polygons or partitions. After this, we moved on to the heart of the study: sequences; we used

generating functions to analyze and count mathematically how many sequences of that kind or

that other should appear.

Now, we use computer science to look at the same problem in a different perspective, probably

more practical and as useful. It is not a supplementary part, but complementary, as both parts will

help one another and at the same time help getting to deeper conclusions. For example, in chapter

6 , we will see a very deep conceptual connection between generating functions and automatons of

search. Another example could be the last chapter, where we apply some programs to big data sets;

if math predicts one thing and the result of the program tells us another, something interesting

could be found.

51



52 CHAPTER 4. INTRODUCTION TO STRING MATCHING ALGORITHMS

4.2 Concept of string matching

As we find it in Introduction to Algorithms([2]):

The string-matching problem is the following. Assume that the text is an array T [1...n] of

length n and that the pattern is an array P [1...m] of length m ≤ n. We further assume that the

elements of P and T are characters drawn from a finite alphabet Σ. Some examples of alphabets

could be the binary alphabet: Σ = {0, 1}, the Latin alphabet: Σ = a, b...z or the genetic code:

Σ = A,C, T,G. Those three alphabets are the ones we will use more often in this second part of

the work.

We say that pattern P occurs with shift s in text T ( or, equivalently, that pattern P occurs

beginning at position s + 1 in text T) if 0 ≤ s ≤ n −m and T [s + 1...s + m] = P [1..m] (that is

T [s+ j] = P [j], for 1 ≤ j ≤ m).

If P occurs with shift s in T , then we call s a valid shift; otherwise, we call s an invalid shift.

The string-matching problem is the problem of finding all valid shifts with which a given pattern

P occurs in a given text T. Although sometimes the problem will be reduced to know if there are

such shifts of pattern P in T.

The string matching problem is very important in present computer science and probably will

become increasingly important as data becomes more and more plentiful. With huge amounts of

data we need computers to search for us in them, as it would take thousands of years for us to find

something. However, using computers does not guarantee fast results in searches as there has been

an exponential growth of data production in the last few decades and this tendency it is likely to

continue.

Take the case of Google and the internet: for the last two decades people from all over the

world have been adding content to the net and it would be materially impossible for anyone to

read all the content in the net. Here is where Google comes, finding exactly what you want. Take

the example of text-editing programs you use everyday, or the program you use to look in your

own computer; without string matching algorithms search would mean so much of waiting time

that the search itself would become useless.

4.3 Notation and terminology used

Let Σ⋆ denote the set of all finite-length strings formed using characters from the alphabet Σ. The

zero-length empty string will be called ε and it also belongs to Σ⋆. As with generating functions
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the size of a string is denoted as |s|. The concatenation of x and y consists of the characters from

x followed by the characters from y.

prefix: w is a prefix of string x when x = wy for some string y ∈ Σ⋆. We denote it as: w @ x

suffix: w is a prefix of string x when x = yw for some string y ∈ Σ⋆. We denote it as: w A x

From these definitions we know that ε is both a prefix and a suffix of every string. Also note that

@ and A are transitive relations. A @ B ∧B @ C ⇒ A @ C and A A B ∧B A C ⇒ A A C.

4.4 Efficiency and asymptotic notation

Note: this section is a brief overview of the concept of efficiency in Computer Science. Thus, it is

only recommended for readers without any experience in this field.

4.4.1 Concept of Efficiency

Programs have a lot of aspects that have to be taken into account, from time consumption to

interaction with other devices or portability. The algorithms at Google might be very fast, but

they have to be equally liable and be able to function in mobile phones, computers, Mac’s equally

well and also easy to make use of them. However, in this case we will only be interested in usage

of resources ( primarily time and memory ) and liability since the programs are for our own use.

We can assume liability since there is not much theory about it, just simply assuring that the

program does not fail even if it is by a fault of the user.

Usually we are more interested in time consumption. Why? Because computers have a

bounded capacity. If computers were infinitely fast, we would not care much about efficient al-

gorithms since all would take the same time. However, we are bounded by the capacity of the

computers, so we have to care about time. Normally, memory is not such a problem and it is

usually easier to handle as well.

Although memory might not seem a problem since we all have gigabytes or even terabyte

in our computers, we have to remember that it is very useful to have all the data used by our

computer in the RAM memory ( a fast access part of the computer ) which is usually bound by

less than 10 GB in personal laptops right now. Using more memory than the one in the RAM

would imply using the one in the hard drive, much slower to use, a fact that time efficiency does

not take into account.
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4.4.2 Asymptotic notation

To know the running time of an algorithm you have to take into account the speed of the hardware

and software, but also your own algorithm. In fact, algorithms can (and usually do) play a crucial

part in the running time.

Let us for example compare a quadratic algorithm with a linear algorithm, both with respect

to n. Even if the computer of the quadratic algorithm is 100 times faster than the linear algorithm

for just an input of n = 106:

(106)2instructions

109instructions/second
= 1000seconds.

106instructions

107instructions/second
= 0.1seconds.

Moreover, we can just look at the asymptotic behavior without looking at all the coefficients in

the algorithm function and just taking the leading term, without looking at the constants. For

example 2x3 + x2 is O(x3), the same category as 10000x3 + x or simply x3. This might sound

confusing but it is a fairly good approximation in most cases.

Figure 4.1 shows the difference between the different degrees of polynomials versus the effect

that constants may have. As one can see, constants do not count much since asymptotically slower

algorithms will always end up taking more time, which is the example of constant time: 1,000,000

and 1 · x3. String-matching algorithms are quite similar in asymptotic behavior, so to be more

Figure 4.1: Comparison of 106, 100x2, x3

precise we will include 4 types of notations.

Best case: the complexity in case it is the best case, or almost like it. Hardly used. For example

having to sort an almost sorted list.

Average case: sometimes the best and worst case are very different, in order to resolve this
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problem we can look at the average performance. Example: Monte Carlo ( randomized ) algorithms

Worst case: a very used notation, to put an upper-bound to the algorithm. It might be useful

to assure that an algorithm will be finished in a certain amount of time.

Although we will not use most of them, to have a global perspective we divide the algorithms

mainly in those categories:

lgn <
√
n < n < n lgn < n2 < n3 < ... < 2n < n!.

Moreover algorithms can depend in more than one variable. In fact, some of the algorithms pre-

sented in this work will. However, in terms of notation it does not change much from monovariable

algorithms, having only to take the combination required such as n ·m, lgmn, mn, etc.

It is also important to notice the big difference between the polynomial algorithms and the

non-polynomial ( exponential ) algorithms. We call NP-complete problems, the ones for which

we do not have a polynomial solution. One of the most important problems in Computer Science

and math is the P-NP problem, to know if all problems have a polynomial solution or not; a very

important issue since NP problems do not have a practical solution since for very small cases it will

take for centuries to compute the result. An example of that is the Traveling Salesman Problem,

where you have to find the path to visit a list of cities and return to the start in the least amount

of time.

Fortunately, as we will see, the string-matching problem is a problem with polynomial solution.

Note that we can use the same notation for memory efficiency as for time efficiency, so essentially

we have all the notation required to study the algorithms presented later.

4.5 The naive string-matching algorithm

4.5.1 Description of the algorithm

The term naive probably refers to the immediateness or facility with which it comes to mind when

thinking about how to find a substring in a bigger string or the perfect logic it uses, just coming

straight from the definition.

We want to find all valid shifts that checks P [1...m] = T [s+1...s+m]. The pseudo algorithm

is the following:

Essentially, we look at every shift and check if it is valid or not. However, we have to take into

account that looking if the shift is valid is itself linear so the pseudo code should look more like:
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Algorithm 1 Naive String Matcher

Require: pattern P, text T

n← length[T]

m← length[P]

for s = 0 to n−m do

if P[1..m]=T[s+1..s+m] then

print ”Pattern occurs with shift” s

end if

end for

Algorithm 2 Improved Naive String Matcher

Require: pattern P, text T

n← length[T]

m← length[P]

for s = 0 to n−m do

b← true

for k = 1 to m and while b is true do

if P [k] ̸= T [s+ k] then

b← false

end if

end for

if b then

print ”Pattern occurs with shift” s

end if

end for
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4.5.2 Complexity

The complexity of this algorithm is Θ(n−m+1) times a for with complexity Θ(m) so a complexity

Θ((n−m+ 1)Θ(m)) = Θ(nm−m2), which is quite slow. Since its bounded in the worst case to

m = n
2 it will give Θ(n2n−

n2

4 ) = O(n2).

However we can make the algorithm much faster by making the loop stop when we already

know a particular shift is invalid.

Then, the complexity in the worst case is still the same: Θ(mn −m2), for example for a pattern

in which all shifts are valid. So in general we can say that the algorithm with this small, but

important, improvement runs in O(mn) instead of Θ(mn).

In the best case, the complexity decreases substantially to Θ(n), for example a string in which all

the characters are different to the first character in the substring we are looking for.

Moreover, there is also a great improvement in the average case:

For example, consider a random word with the latin alphabet ( 26 caracters ), the probability that

it ends in the first letter is 25
26 which is more than a 96% of cases. This gives as very low average

cases as we can see in table of figure 4.2: We can perform a deeper analyze of those tables and ask

some questions about them. First, we observe that the probability of ending at the ith character

in an alphabet of length L. This is equal to the probability of not ending in any of the steps before

i and that the strings differ in the ith character. The probability that two characters coincide in

an alphabet with L characters is 1
L , the probability that they do not is therefore: L−1

L . Therefore

the probability of ending in the ith character in an alphabet of length L is:

P =
L− 1

L
· ( 1

L
)i−1 =

L− 1

Li
≈ L−(i−1).

It would also be interesting to know the average number of steps depending on n, the length

of the string, and L, the length of the alphabet. We have then to do a weighted average, the turn

i·probability of finishing at turn i. For every turn i < n the probability would be the same as

stated before but the probability of finishing at the nth turn is the probability of not finishing in

any of the other terms. Therefore the total average is:

n−1∑
i=0

i · L− 1

Li
+ L−n.

Now we want to get a closed expression. First we want to know the value of the sum. For that we

will simplify the expression taking u = 1
L and factoring out (L− 1) getting:

(L− 1) ·
n−1∑
i=0

i · ui.

Now we prove a little Lemma:
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Figure 4.2: Probability of ending in each step in the naive algorithm

Lemma 4.5.1

1 + u+ u2 + ...+ u(n−2) + u(n−1) =
1− un

1− u
.

Proof:

1 + u+ u2 + u3 + u4 + ... =
1

1− u
.proved in Chapter 2

If we multiply by un we get un + u(n+1) + u(n+2) + ... = un

1−u . Now we subtract the 2nd equality

from the 1st getting:

1 + u+ u2 + ...+ u(n−2) + u(n−1) =
1− un

1− u
.

�
We can continue to develop our sum:

n−1∑
i=0

ui = 1 + u+ u2 + u3 + u4 + ...+ u(n−1) =
1− un

1− u
.
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Recalling our experience with generating functions we can now take the derivative and multiply

by u, getting:

1u+ 2u2 + 3u3 + 4u4 + ...+ (n− 1)u(n−1) =
u+ n · u(n+1) − un − n · u(n−1)

(1− u)2

We now substitute u = 1/L and multiply by (L-1) getting:

L

L− 1
− L(1−n) · (Ln− n+ 1)

L− 1

This rearrangement is not a coincidence showing the evolution we see in graph of figure 4.3. Fixing

L constant the first term is clearly constant and the second one goes to 0 because exponential grows

much faster than linear. Note also that since L>0 the second term of the formula will always be

positive and therefore we can fix the upperbound at L
L−1 as the graph in Figure 4.3 also points

out.

This means for example that the average case of a binary word will never be greater than 2,

in the genetic code it will never be greater than 4
3 etc. This is a pretty amazing result because one

would expect the average number of steps to be very large when the words have infinitely many

characters.

Therefore the average case is:Θ( |Σ|
|Σ|−1n)→ O(2n) = O(n).

Figure 4.3: Average number of steps of the naive algorithm

With this we have seen that the naive algorithm works amazingly well in the average case,

but at the same time runs very slow in the worst case. Let us make an example of that:
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4.5.3 Examples and particular cases

Running the algorithm with pattern P = 0001 and text T = 000010001010001.

1. With shift 0 we make 4 comparisons to determine that the pattern is invalid (1 vs 0).

2. With shift 1 we make 4 comparisons to determine that the pattern is valid.

3. With shift 2 we make 3 comparisons to determine that the pattern is invalid (0 vs 1).

4. With shift 3 we make 2 comparisons to determine that the pattern is invalid (0 vs 1).

5. With shift 4 we make 1 comparison to determine that the pattern is invalid (0 vs 1).

6. With shift 5 we make 4 comparisons to determine that the pattern is valid.

7. With shift 6 we make 3 comparisons to determine that the pattern is invalid (0 vs 1).

8. With shift 7 we make 2 comparisons to determine that the pattern is invalid (0 vs 1).

9. With shift 8 we make 1 comparison to determine that the pattern is invalid (0 vs 1).

10. With shift 9 we make 2 comparisons to determine that the pattern is invalid (0 vs 1).

11. With shift 10 we make 1 comparison to determine that the pattern is invalid (0 vs 1).

12. With shift 11 we make 4 comparisons to determine that the pattern is valid.

In total we have made 31 comparisons.

Supposing that all characters in the pattern P are different we can accelerate

the naive algorithm to be linear

Suppose we have a coincidence in the first (c−1) characters of P and then we get a mismatch in the

cth character. Then any shift from 1 to c−1 has to be invalid since any of those characters have to

be different from the first one of the pattern. Therefore we can start directly searching for shifts in

the character that has produced the mismatch. Thus, the worst case is to have all the characters

in the text equal to the first character in the pattern giving a complexity of O(2n) = O(n).

Finally, we should add that in case of getting a valid shift we should just continue with the

next character after the end of the shift instead of continuing with the second character of the

shift.
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Gap character: ⋄

A very important way of search is with the gap character, which allows a separation between the

parts that separates. Take for example pattern P =Obama⋄ McCain and the text T =Obama won

the 2008 elections against senator McCain. This would give a valid shift since we have the word

Obama, then a separation ( that can be equal to ε ) and then the word McCain. The utility of this

type of search is immense.

In fact, we can get a polynomic algorithm to find patterns containing ⋄ using the naive al-

gorithm. Note again the importance of finding a polynomic algorithm instead of an exponential

one.

Let us take the pattern P1 ⋄ P2 ⋄ · · · ⋄ Pt of length n.

We look at the first appearance of P1 with the naive algorithm, if we do not find it we are

done as it clearly implies that we cannot find the total text. If we do find it we use again the naive

algorithm to look for pattern P2 after the end of the first appearance of pattern P1 and we do the

same procedure.

Example:

P =AAA⋄BBB⋄ABA

T =BAAABABBBABABB

We can find AAA: BAAABABBBABABB, now we can start looking for BBB in BABBBABABB

and we find it: BABBBABABB. Finally we look for ABA in ABABB, so we have found the

pattern P. The complexity of this algorithm is O(nm) too, as the normal naive algorithm. This is

because at most we look at n shifts ( in case we do not find the pattern ) and in each shift we do

at most m comparisons, depending on the length of the word, which is limited by the length of the

pattern, m. We proved this to be O(n2) and therefore we have found a polynomic algorithm. As

we will later see we can make improvements to this algorithm.

4.6 Rabin-Karp algorithm

4.6.1 Explanation of the algorithm

From now on, the other three algorithms that we will analyze use a preprocessing algorithm of a

relatively small cost to decrease dramatically the cost of the search.
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This algorithm is based in basic notions of number theory, basically if a ̸= b mod m → a ̸= b.

As you can see this algorithm is based in properties of the naturals, so most of our examples will

be done with this, however it is very important to notice that we could eventually make some easy

translation from signs from an alphabet to numbers and it would work as well, as long as this

conversion is always the same.

Let us start without doing modular arithmetic and simply adding the numerical values of the

pattern:

Define s as:

s =
m∑
i=1

mm−iP [i].

This formula is just the interpretation of the string of signs in base m. For example if Σ = 0, 1, 2...9

and P = 168103, then the pattern would just simply be interpreted as the base 10 number 168103.

We can also calculate s’ for a substring of the text:

Define s’ as

s′ =
m∑
i=1

mm−iP [i+m].

It is clear that P [1...m] = T [k + 1...k + m] ⇒ s = sk so we can also get: sk ̸= s ⇒ P [1...m] ̸=

T [k + 1...k +m]. In fact we have:

P [1...m] = T [k + 1...k +m]⇐⇒ s = sk.

Now, the important part is that we can in fact calculate sk in O(1) as:

sk+1 = m(sk − 10m−1T [k + 1]) + T [s+m+ 1].

This can prove very useful with small patterns and small alphabets, such the binary alphabet, but

you have to take into account that when patterns start getting big:

1. You can have an overflow: you need to store a value that is too big to store in a variable

2. Comparing numerical values can be as costly as comparing the sequences

Now we can apply modular arithmetic and considering the values mod a certain value w. Now we

have:

P [1...m] = T [k + 1...k +m]⇒ s ≡ sk mod w.

Since that the two sequences are equal implies that their values are equal and this does imply that

they are equivalent mod any w. However the fact that two values are equivalent mod w does not

imply that they are equal, so it does not imply that the sequences are equal. However, we still

know that if sk ̸= s then P [1...m] ̸= T [k + 1...k +m]; a fact used by the algorithm.
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Note that the operation to get sk+1 in O(1) is still valid in mod w.So this congruence mod w

will be a fast heuristic to filter the great majority of cases.

Now, we still have to calculate both s and s0 in Θ(m), which is the preprocessing time.

Then, for the normal search we have that if sk = s we check if they are equal or not in Θ(m)

by just trying to match each character. A shift for which sk = s but P [1..m] ̸= T [k + 1...k +m]

is called spurious hit; we want to have the minimum of those to approach the linear complexity (

since if we do not have to check spurious hits we need only O(1) to check every shift). For this

we want the biggest possible q since the probability of have a spurious hit is approximately 1
q .

However, note that for very big q’s we may have overflows or comparisons that are so big that

cannot be considered constant.

In this case we usually take q ti be a prime number such that |Σ| · q just fits within one

computer word, allowing all necessary computations do be performed. For example if |Σ| = 26 the

limit is 231 − 1 then q = max{p: p is prime and p < ⌊ 2
31−1
26 ⌋} = 82.595.483 giving a probability of

a spurious hit of 1
82595483 = 0.00000121%. As you can see in this ordinary example the probability

of getting a spurious hit can be, and usually is, very small.

4.6.2 Pseudocode and complexity

For pattern P, text T, |Σ| = d, working modulo q we have: With the pseudocode it is quite easy

to follow the procedure and determine the best, worst and average case. To begin with, the pre-

processing time is always: O(m) since we do 2 times a for of m constant operations.

Then the processing algorithm:

Best case: in all cases the heuristic gives a negative → O(n−m).

Worst case: in all cases the heuristic gives a positive (fake or real) → O((n−m+ 1)m).

Average case: the number of positives is equal to the real positives where there is a shift of the

pattern and the spurious hits that appear with the frequency 1
q . Therefore: O(m(v+ n−v

q )) where

v is the number of matchings. This gives a total complexity of:

Best case: O(m) +O(n−m) = O(n)

Worst case: O(m) +O((n−m+ 1)m) = O(nm)

Average case: O(n) +O(m(v + n/q))
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Algorithm 3 Rabin-Karp Algorithm

n← length[T ]

n← length[P ]

h← dm−1 mod q

p← 0

s0 ← 0

for i = 1 to m do

p← (d · p+ P [i]) mod q

t0 ← (d · s0 + T [i]) mod q

end for

for s = 0 to n−m do

if P = ts then

if P [1...m] = T [s+ 1...s+m] then

print ”Pattern with shift” s

end if

end if

if s < n−m then

sk + 1← (d(ts − T [s+ 1] · h) + T [s+m+ 1]) mod q

end if

end for

4.6.3 Problems

Example with pattern P=26, T=3141592653589793 and q=11

This example is taken from [2][p. 915] because the author find it interesting to do searches using

the famous number π

First: 26 mod 11 = 4. Now:

• 31 mod 11 = 9→ nothing

• 14 mod 11 = 3→ nothing

• 41 mod 11 = 8→ nothing

• 15 mod 11 = 4→ spurious hit
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• 59 mod 11 = 4→ spurious hit

• 92 mod 11 = 4→ spurious hit

• 26 mod 11 = 4→ found

• 65 mod 11 = 10→ nothing

• 53 mod 11 = 9→ nothing

• 35 mod 11 = 2→ nothing

• 58 mod 11 = 3→ nothing

• 89 mod 11 = 1→ nothing

• 97 mod 11 = 9→ nothing

• 79 mod 11 = 2→ nothing

• 93 mod 11 = 5→ nothing

In total we got 3 spurious hits and 1 found.

Rabin-Karp for more than one pattern

First let us make the simplification that all the patterns have the same length m. Then, the

algorithm is quite simple: with one word we only checked if the last m characters had the same

value mod q than the pattern we were looking for. If we are looking for more than one pattern

but they are all of the same size we can do the same and check at each step all the patterns that

match the value mod q of the last m digits.

Now, without this simplification the problem gets tougher: we would have to take account of

the value of the last mi digits for every i. In fact, this is one possible solution but there is another

one which, although it does not change the time complexity much, overcomes the necessity of

having multiple counters giving a much more simple and elegant program.

We can do a preprocessing algorithm that stores into a vector the value of the first i digits

mod q in v[i]. Then v[0] = T [0] mod q and v[i] = (|Σ|v[i − 1] + T [i])mod q for i > 1. It is

also convenient to calculate another vector w where each w[i] is |Σ|mi mod q for every mi, each

calculated in O(lgmi).

Now, for each pattern of size mi one can calculate in constant time the last mi digits ending

in position j by doing v[j]− v[j −mi] · bmi−1 mod q. Apart from this, the rest of the algorithm is

the same as the one that has the simplification of equal sizes.





Chapter 5

String matching with finite

automata

Still having a quadratic upper-bound, we would like to have an algorithm with lineal upper-bound.

In this chapter we will introduce and prove an algorithm with such a bound: finite automata. After

doing so we will create some personal variations of this algorithm to find other types of patterns

apart from the conventional ones. This algorithm will have a high importance later in the paper

by helping to solve our main mathematic problem.

5.1 Description of an automaton

As described in [2, p. 916] a finite automata is a 5-tuple (Q,q0,A,Σ,δ), where:

• Q is a finite set of states,

• q0 ∈ Q is the start state,

• A ⊆ Q is a distinguished set of accepting states,

• Σ is a finite input alphabet ,

• δ is a function from Q× Σ into Q, called the transition function of M.

Then, the automaton begins in state q0 and while reading the input string one character at a

time will also move through the states. Specifically, if the automaton is at state q and it receives

67
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character a it will move ( ’make a transition’ ) from state q to state δ(q, a). Moreover, whenever

the current state of the automaton is a member of A, we will say that the automaton has accepted

the string read so far. When an input is not accepted is said to be rejected.

Take for example, consider the following automaton in Figure 5.1 for automaton M; there,

string ”000”would end in state B and therefore would be accepted whereas string ”010”would end

in state A and therefore it would not be accepted. In fact, note that this particular automaton

accepts strings with an odd number of 0, since getting a 1 does not change the state but 0 does.

Figure 5.1: Automaton that accepts words with an odd number of zeros

A finite automaton M induces a function ϕ, called the final-state function, from Σ∗ to Q

such that ϕ(w) is the state M ends up in after scanning the string w; then we can check if M

accepts w by checking if ϕ(w) ∈ A. From the definition of our automaton, ϕ is defined recursively

as:

ϕ(ε) = q0

ϕ(wa) = δ(ϕ(w), a) for w ∈ Σ∗, a ∈ Σ.

Therefore, for our two examples, ϕ(000) = B and ϕ(010) = A.

5.2 Description of the algorithm

Note: This explanation is inspired in [2, p. 917]; the author made an effort to provide personal

examples and make a summary and simplification of the explanation of the algorithm.

We can build a string-matching automaton for every pattern P , in a preprocessing step to

then accelerate the processing time down to Θ(n); it is very important to understand that the

automaton will not depend on the text or word it is looking in but on the pattern it is looking for.

Let us first define an auxiliary function σ, called the suffix function corresponding to P and
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going from Σ∗ to 0, 1, ...,m, such that σ(x) is the length of the longest prefix of P that is a suffix

of x:

σ(x) = max{k : Pk A x}.

Remember that P0 = ε and therefore the function is well defined. For example, taking pattern

P = 0101 we have σ(ε) = 0, σ(00000) = 1, σ(11010) = 3.

In particular, our automaton will be such that it has a start state q0 which will be called 0

and an only accepting state, state m. Furthermore, the transition function δ is defined such that

for any character a and state q:

δ(q, a) = σ(Pqa)

Which maintains the equality: ϕ(Ti) = σ(Ti) as proved in Theorem 5.2.4; in plain words this

means that after scanning the first i characters of the text T, the machine will be in state ϕ(Ti),

which, by its definition, is the length of the longest suffix of Ti that is also a prefix of P, our pattern,

as we will prove now.

5.2.1 Proof of the algorithm

In this case a very simple and beautiful demonstration by induction is presented in [2][p. 921]

with some previous lemmas with some modifications made by the author to increase its readability

providing slightly different proves for them.

Lemma 5.2.1 Suppose that x, y and z are strings such that x A z and y A z. If |x| 6 |y|, then
x A y. If |x| > |y|, then y A x. If |x| = |y|, then x = y.

Proof: Let n be the size of x and let m be the size of y. If n 6 m this means that both the last

n characters of x and the n last characters of y are equal to the last n characters of z. Therefore

the last n characters of x are equal to the last n characters of y. Thus by definition: x A y.

If n > m this means that both the last m characters of x and the m last characters of y are

equal to the last m characters of z. Therefore the last m characters of x are equal to the last m

characters of y. Thus by definition: y A x.

If n = m then n 6 m (⇒ x A y) and n > m (⇒ y A x). x A y and n > m can only happen

at the same time if x = y. �

Lemma 5.2.2 For any string x and character a, we have σ(xa) 6 σ(x) + 1.
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Proof: Suppose that σ(xa) > σ(x) + 1. This, by definition implies that the last σ(xa) are both a

prefix of P and a suffix of x. In other words, if n is the size of x:

Tn−i+1 = Pi+1

for every i 6 σ(xa)

Which implies that if we are looking at the penultimate σ(xa)−1 characters they will also coincide.

But by definition of σ(x), this cannot happen because only the penultimate σ(x) coincide and

σ(xa)− 1 > σ(x). Thus:

σ(xa) 6 σ(x) + 1

�

Lemma 5.2.3 For any string x and character a, then if q = σ(x), then σ(xa) = σ(Pqa).

Proof: From the definition of σ, we have Pq A x.

Logically, if we add the same character at the end of two words that shared their last q characters,

they will now share their last q + 1 because they still share their q + 1 last characters except the

last by the definition of the words and they share the last one because we have added the same

character to both. Therefore Pq|sqsupsetxa. Call r σ(xa), then r 6 q + 1 by Lemma 5.2.2. Now

we have both Pqa A xa, Pr A xa, and |Pr| = |Pqa|, which implies Pr A Pqa by Lemma 5.2.1.

Therefore r 6 σ(Pqa), in other words, σ(xa) 6 σ(Pqa). But since Pqa A xa we also have

σ(Pqa) 6 σ(xa).

Thus, σ(xa) = σ(Pqa). �

Theorem 5.2.4 If ϕ is the final-state function of a string-matching automaton for a given pattern

P and T[1...n] is an input text for the automaton, then ϕ(Ti) = σ(Ti) for every i 6 n.

Proof: First, we check the base case ϕ(T0) = ϕ(ε) = 0 = σ(ε) by definitions of T0 and σ(0).

Now, assuming that ϕ(Ti) = σ(Ti) we want to prove that ϕ(Ti+1) = σ(Ti+1). Let q denote

ϕ(Ti), and let a denote T [i+ 1]. Then,
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σ(Ti+1) = ϕ(Tia)(by the definition of Ti+1 and a)

= δ(ϕ(Ti), a) (by the definition of ϕ)

= δ(q, a) (by the definition of q)

= σ(Pqa) (by the definition of δ)

= σ(Tia) (by Lemma 5.2.3 and induction)

= σ(Ti+1) (by the definition of Ti+1) .

�

5.2.2 Illustration and explanation

Now that we have proved the algorithm, we can proceed to explain it less rigorously. As the other

algorithms we are looking for the pattern in a particular shift; however, the big difference is that,

in case we cannot find it we use the information we have to avoid the necessity of going back and

analyze the same substring again.

The states of the automaton can be seen as levels of alert, indicating the maximum prefix of

the pattern that coincides with a suffix of the text. Take for example pattern 011, which will later

be analyzed mathematically. We have an associated automaton illustrated in Figure 5.2.

Note: to make it clearer states will be called ”a,b,c...” instead of by numbers to avoid the

confusion with the numbers (that represent the characters of the pattern ).

Consider text T = 0101100.

Figure 5.2: Automaton that looks for appearances of pattern 011
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1. We start in state a (state q0 ).

2. Since we scan a 0 we move to state b, equivalent to have a coincidence of 1 character,

3. Scanning a 1 we move to state c ( 2 character-coincidence ).

4. Scanning a 0 we do not get back to state a as we did with the naive algorithm but move

back only to b.

5. Scanning a 1 we move again to state c.

6. Scanning a 1 we move to state d, which is an acceptor state and we indicate the found.

7. However, we can continue looking for more appearances, we scan a 0 and we move back to

b.

8. Finally we scan another 0 and we stay in b, ending in state b.

As one can see, the current state indicates the maximum coincidence we have up to that moment;

this information and the next character are the only requirements to know the future state. Using

this, we can move up and down the automaton until we discover the pattern. We can also build

automata that just tell us if a pattern appears in the text, but not how many times or where. In

fact, this type of automata will be the most used in our theoretical and mathematical applications.

The only difference with the previous type of automata is that once you get to the accepting state,

instead of printing that the automaton found the pattern and continue looking the automaton

never goes out from the accepting state. At the end, to look if the pattern appears in the text, we

will have to look if the final state is the accepting state. Take for example the same 011 but with

a closed end, just to look if a text contains 011 one or more times represented in Figure 5.3.

Figure 5.3: Automaton accepting patterns containing pattern 011
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5.3 Personal variations of the algorithm

Interested in this algorithm, the author created its own variations of it. Some of them were done

just for curiosity or the desire to go deeper and create personal algorithms, but they turned out

to have a great importance later on in the paper with some unexpected, and yet of high interest,

applications.

All in all, those algorithms provide an understandable illustration of this crucial algorithm.

Moreover, they are some very good examples because they are much more difficult to create than

they are to understand, since the first requires to have a great insight of the algorithm and the

latter provides this insight. In this section, we will analyze four different variations of the algorithm,

from most simple to more complex.

5.3.1 Multiple-possibilities character

This only implies a small modifications of the automaton. If a is the accepted n-th character then

we have ·δ(n−1, a) = n. Normally we only have this for one character a; however, if we accept more

than one character we can let δ(n−1, b) and δ(n−1, c) also to be n, etc. This multiple-possibilities

character also has to be taken into account when looking for possible suffixes for future states. For

example both 011 and 111 are suffixes of 1?11; therefore every time ’O’ options are possible we

have to divide the automaton into ’O’ different automatons because the future transitions will be

affected by the character that is put as ’?’. For example consider pattern P=0?1?1 and state 2(

you already got ’0?’) if you get a 0 you would go to state 1 if ’?’=1 and to state 2 if ’?’=0.

Figure 5.4 describes the automaton for this pattern P=0?1??1. This type of automaton are

quite complex, for example the change between E01 and E10 when a 0 is scanned: 00100 we can

take the suffix 0100 which changes the value of both ’?’ in order to create the largest possible

suffix.

Moreover, we can go further in our analysis and just accept some, but not all the characters;

this could be done in a similar manner; as illustrated in Figure 5.5 for pattern GA(A/G)C where

(A/G) means character A or G.

Finally, note that one can ask for a n-character space between two ’words’. For example if

one wants to search for pattern 0011 then a 8-character space and then 1100, this is equivalent to

search pattern: 0011?? 8. . .??1100.



74 CHAPTER 5. STRING MATCHING WITH FINITE AUTOMATA

Figure 5.4: Automata accepting words that contain pattern 0?1??1

5.3.2 Gap character ⋄

As we did with the naive algorithm, we want to find patterns with the gap character ⋄, which

remember that it stands for an undetermined space, including the empty space.

If we analyze it, looking for pattern: P = P1 ⋄P2 ⋄· · ·⋄Pn is equivalent to first look for pattern

P1, then from the end of it, look for pattern P2 and so on. We used this to get a polynomial-time

algorithm using the naive approach.

In automatons we can do the following:

1. Let P be the pattern we are looking for; for example 00 ⋄ 111 ⋄ 01.

2. Mark all the characters that go before a ⋄: 00⋄111⋄01.

3. Eliminate the diamonds: 0011101.

4. Every marked character will have its state treated as a start state.

It is very important to understand that we take every character before a ⋄ since the end state for

Pi is the start state for Pi+1 since we still have not found any character of Pi+1.
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Figure 5.5: Automata accepting words that contain pattern GA(A/G)C

By start state it is meant the only state from which we cannot go back. Looking at the

automaton in Figure 5.6 this would represent that state A,C and G are a point of no return: once

you get there, the automaton will never go back to previous states than A,C or G respectively.

This ⋄ character can be very useful to search for an ordered sequence of patterns P1, P2, ..., Pn all

Figure 5.6: Automaton accepting words that contain pattern 00 ⋄ 111 ⋄ 01

of size 6 m in time O(
∑
|Pi|) = O(n ·m). Ordered sequence of words appear for example in genes

when one is only looking for exons, which are separated by introns of variable size and content.

On the other hand, we can also look in a text for all the words without any particular order,

by trying all the different permutations of P1, ..., Pn, which are n! as we saw with permutations

without repetition in the first chapter. Thus searching for all the words could be done in O(n!·n·m).

However, we will later see how to improve this complexity.
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5.3.3 Detecting either of some patterns

Given a list of patterns P1, P2, ..., Pn we would like to create an automaton that finds one of them.

A first thought could be to do it with O(mn) states by having all the possible combinations of states

for each pattern such as 0, 0, 0.., 0 , 0, 0, 0, ..., 3 or 2, 4, 0, 0, 2, .., 5. This would be impracticable as

O(mn) is exponential.

Instead, we should notice that lots of possible combinations of states will never happen. For

example, if one is looking for 0000 or 1111, one of the states must be 0 at any time. Instead, we

can use the same fact we used for the simple algorithm: the longest known suffix and the next

character are the only requirements to know the following state. However, now the longest known

suffix will be of all the patterns we are looking for. Note that sometimes there might be a tie (

if two words share a prefix ); in this case we can just say arbitrarily that the first word takes the

state. Thus, we only have to consider the m possible state for each of the n patterns, which is

O(m · n) states.

Let us take the example of patterns P1 = 010, P2 = 111 and P3 = 000 for which we get the

automaton in Figure 5.7.

Let us analyze text T=00111. Each state will be given in two coordinates (word,state in the

word).

1. We start at (1,0)

2. Scanning a 0 we get suffixes of size 1,0,1 respectively; thus the next state will be (1,1).

3. Scanning a 0 we get suffixes of size 1,0,2 respectively; thus the next state will be (3,2).

4. Scanning a 1 we get suffixes of size 2,1,0 respectively; thus the next state will be (1,2).

5. Scanning a 1 we get suffixes of size 0,2,0 respectively; thus the next state will be (2,2).

6. Scanning a 1 we get suffixes of size 0,3,0 respectively; thus the next state will be (2,3).

7. We have arrived at the final state of word 2.

Some uses of this algorithm could be to Google-style searches, where we just want to find one of

the patterns from a list or, also in genetics, we want to find the nitrogenous bases that represent

an amino acid, since more than one representation is possible, this algorithm also proved useful.
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Figure 5.7: Automaton accepting words that contain 010,111 or 000

5.3.4 Detecting all the patterns

When one is looking for two things and has no idea about where they might be it is usually

convenient to start looking for both of them and when one is found, just look for the second one.

In general if one is looking for patterns A1, A2, ..., An it is useful to always look for the subset of

Ai which still has not been found.

Take the case of only two words: looking for patterns A and B: we will first look for either A

or B. Then, if we find A, start looking only for B and, in case we first found B, start looking only

for A.

For this we will have an automaton build from three different automatons, the first line looks

for A or B, the second one for A and the third one for B.

For example take A=000 and B=111. The automaton build for finding both of them, in any

order, is described in Figure 5.8.
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Figure 5.8: Automaton accepting words that contain patterns 000 and 111

In Figure 5.8 we separated graphically line 1.1 and 1.2 because a pattern that looks for either

of n patterns will have n lines. Therefore line 1.1 refers to pattern 000 and line 1.2 refers to pattern

111 but together they work as ’sub-automaton’ to find either of the two patterns.

Let us analyze the number of states when looking if a word contains all of n patterns. Let

S be the set of patterns P1, P2, ..., Pn we are looking for, all of sizes 6 m. First of all, remember

that we will have one ”either” automaton for each subset and since we have 2n possible subsets we

will have 2n ”either” automata, but they will be of different sizes; therefore we have to go deeper

in our analysis.

As we described in the previous subsection to find either of n patterns of sizes 6 m we will

have an automaton of at most O(n ·m) states. We know we have
(
n
i

)
automata looking for either of

i patterns, because we are choosing i patterns from n, as we showed in the first chapter. Therefore
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the total number of states should be:

n∑
i=0

(
n

i

)
· i ·m

We can factor out the m getting:

m ·
n∑

i=0

(
n

i

)
· i

Which as proved in Theorem 5.3.1 is:

2n−1 · n ·m.

This complexity is much faster than the one proposed using gap characters as one can see in Figure

5.9 which fixes m constant.

Figure 5.9: Comparison of 2n with n!

Theorem 5.3.1
∑n

i=0

(
n
i

)
· i = 2n−1 · n

Proof: Since
(
n
i

)
=
(
n−i
i

)
we can factor group each i with its complementary so that they add up

to n. Which: If n is odd we have:

n∑
i=0

(
n

i

)
· i =

n/2∑
i=0

(
n

i

)
· (i+ (n− i)),

n ·
n/2∑
i=0

(
n

i

)
.
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Knowing
∑n

i=0

(
n
i

)
= 2n (Theorem 1.2.1 ) and that

(
n
i

)
=
(
n−i
i

)
we have that our sum must be

half of 2n and thus:

n ·
n/2∑
i=0

(
n

i

)
= n · 2n−1.

�

5.4 Chapter remarks

All those diverse algorithms provide an enormous diversity of tools to find different types of patterns

or combinations of patterns. Starting by the basic algorithm we changed it to a combination of

flexible algorithms ultimately capable of determining together if a text contains ”(A or B) and ( C

or D ) ⋄ (E or F)” given patterns A-F.

On the other hand, one could think that it is useless to create a unique automaton to determine

such complex combinations; for example, to find if a text contains patterns A or B, instead of

creating a single complex automaton we could create two standard automata, one for each pattern,

and see if both find their pattern. However it is of high importance to have a single automaton to

determine these combinations. Having a single automaton is needed to perform a mathematical

analysis that will be seen in the next chapter, where we connect generating functions with all those

automata algorithms.



Chapter 6

Connecting Generating Functions

and Automata

Pure mathematics is, in its way, the poetry of logical ideas. Albert Einstein

Once solved our computer science problem, let us get back to the big mathematical question we

had at the beginning:

Given an alphabet and a given size, how many words are there with a given pattern

of that size?

We first tried with the basic formulas, it did not work. Then we tried with recurrences and it did

not work either. Generating functions along with the symbolic method seemed a good approach,

but we could not finalize it. Once again, one part of the study helps the other; in this case the

algorithm gave us some insight about the mathematical part. Let us show it with an example.

6.1 A first example

We want to know the number of words of each size that contain the pattern 011. To do it we

start with the computer science approach, drawing the automat, as we described it in a previous

chapter.

81
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Now, remember that asking the question how many words of a given size have pattern ′011′

is exactly the same question as how many words, when passed through this automat will end in

state d.

Before asking this question, let us ask first:

Suppose they start in state d, how many words will end up in state d?

This is not a very complicated question, the empty word will certainly be there as not doing

anything will certainly guarantee to stay in the same state. Now let us look all the possibilities:

• The empty word

• Words that start with a 0 ( thus stay in state d ) and then go from state d to state d.

• Words that start with a 1 ( thus stay in state d ) and then go from state d to state d.

Now, let us do it for words starting from state c. We still want to know how many words starting

in state c will get to state d. Now note that you cannot get to state d with the empty word.Let

us, once again, analyze all the possibilities:

• Words that start with a 0 ( thus go to state b ) and then go from state b to state d.

• Words that start with a 1 ( thus go to state d ) and then go from state d to state d.

We can do the same for state b:
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• Words that start with a 0 ( thus stay in state b ) and then go from state b to state d.

• Words that start with a 1 ( thus go to state c ) and then go from state c to state d.

And for state a:

• Words that start with a 0 ( thus go to state b ) and then go from state b to state d.

• Words that start with a 1 ( thus stay in state a ) and then go from state a to state d.

We can describe this formally:

La = 0Lb ∪ 1La,

Lb = 0Lb ∪ 1Lc,

Lc = 0Lb ∪ 1Ld,

Ld = 0Ld ∪ 1Ld ∪ {ϵ},

And now using the symbolic method transform it to equations with generating functions:

La(z) = zLb(z)+ zLa(z)

Lb(z) = zLb(z)+ zLc(z)

Lc(z) = zLb(z)+ zLd(z)

Ld(z) = zLd(z)+ zLd(z) + 1,

We can rewrite this using matrices:


La(z)

Lb(z)

Lc(z)

Ld(z)

 =


z z 0 0

0 z z 0

0 z 0 z

0 0 0 2z




La(z)

Lb(z)

Lc(z)

Ld(z)

+


0

0

0

1


Now let us define a more compacted definition for each matrix:

I =


La(z)

Lb(z)

Lc(z)

Ld(z)
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T =


z z 0 0

0 z z 0

0 z 0 z

0 0 0 2z



v =


0

0

0

1


With all this, the matrix equation can be rewritten to:

I = T · I + v

v = I − T · I

Factor out ’I ’ and let Id be the identity matrix of size 4.

(Id− T )I = v

We rewrite it in the expanded form:


1− z −z 0 0

0 1− z −z 0

0 −z 1 −z

0 0 0 1− 2z




La(z)

Lb(z)

Lc(z)

Ld(z)

 =


0

0

0

1


Now, note that this is a system of 4 equations and 4 unknowns and that those equations are

independent because each have a ’1’ in different position. Therefore we will get a single solution.

We can solve the system by using the Gaussian Elimination we learn in school, with the

difficulty of being a system involving functions and not real numbers. Let us show the procedure

( for an easier following, changes are in bold ):


1− z −z 0 0

0 1− z −z 0

0 −z 1 −z

0 0 0 1− 2z

∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

1



We put the first non-zero coefficients of the first two equations to 1.



6.1. A FIRST EXAMPLE 85


1 −z

1−z
0 0

0 1 −z
1−z

0

0 −z 1 −z

0 0 0 1− 2z

∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

1


We clear out the second column.


1 0 −z2

(1−z)2
0

0 1 −z
1−z 0

0 0 1−z−z2

1−z
−z

0 0 0 1− 2z

∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

1


We put the first non-zero coefficient of the third row to 1.


1 0 −z2

(1−z)2 0

0 1 −z
1−z 0

0 0 1 −z(1−z)
1−z−z2

0 0 0 1− 2z

∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

1


We clear out the third column.


1 0 0 −z3

(1−z)(1−z−z2)

0 1 0 −z2

1−z−z2

0 0 1 −z(1−z)
1−z−z2

0 0 0 1− 2z

∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

1


We put the first non-zero coefficient of the last row to 1.


1 0 0 −z3

(1−z)(1−z−z2)

0 1 0 −z2

1−z−z2

0 0 1 −z(1−z)
1−z−z2

0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

1
1−2z


We clear out the last column and we finally get the solutions.
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1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣

z3

(1−z)(1−2z)(1−z−z2)

z2

(1−2z)(1−z−z2)

z(1−z)
(1−z−z2)(1−2z)

1
1−2z


In other words:

La =
z3

(1− z)(1− 2z)(1− z − z2)

Lb =
z2

(1− 2z)(1− z − z2)

Lc =
z(1− z)

(1− z − z2)(1− 2z)

Ld =
1

1− 2z

Now note that we are mainly interested in La because we will make the automata start at a,

it would not make sense otherwise. To better analyze La we can decompose it in partial fractions:

La =
1

1− z
+

1

1− 2z
− z + 2

1− z − z2

Here we recognize the first two generating functions:

1

1− z
=

∞∑
k=0

zk

1

1− 2z
=

∞∑
k=0

2kzk

We only have to analyze the last one:

z + 2

1− z − z2
= 2 + 3z + 5z2 + 8z3 + ... =

∞∑
k=0

Fk+3z
k

In fact, note that we do recognize the denominator as the characteristic polynomial found in the

first chapter.

So in general we now know that for a given size n, the number of binary words containing

”011” is:

2n + 1− Fn+3.

Finally note that Fn as n→∞ grows as ϕn

√
5
(Proved in Chapter 1) and since ϕ < 2 we know that:

2n + 1− Fn+3

2n
as n→∞ = 1
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And that:

2n + 1− Fn+3 as n→∞ = 2n − ϕn

√
5
.

This is pretty logical since the probability of not having any 011 in an infinite sequence must be 0.

6.2 Generalization

The procedure we did with our example of 011 can always be applied to any pair of pattern

and alphabet ( given than the pattern is written in the alphabet ). We could get the generating

function associated to another binary words such as ’000’ ( 1
1−2z−

z2+z+1
1−z−z2−z3 )or to the codon AUG,

methionine ( 1
1−4z −

1
1−4z+z3 ).

We always have to do the same procedure:

1. Build the automata as described in the previous chapter

2. Get the matrix from the automata

3. Solve the system of equations using Gaussian Elimination

4. Separate into partial fractions

5. Try to get a formula from the partial fraction sum

The first point has already been shown, let us analyze the second one:

Getting the matrix from the automata

Start with the identity matrix. After this, take the automata that detects if there is a pattern in

a text (Important: we must not take the automata that detects each appearance). For each arrow

in the automata we subtract a ’z’ in the position : row= first state, column= second state. For

example if we have an arrow going from state A to B we will subtract ’z’ to the position (1st row,

2nd column).

Solve the system of equations using Gaussian Elimination

Gaussian Elimination consists in the following algorithm:

For each row:

1. Divide all the coefficients so that the first non-zero term in the row is 1.
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2. Subtract the necessary quantities from the others rows so that all the terms in the column

where our row start, the other rows have a 0.

This ensures that at the end we will have the extended matrix with the identity matrix left and

the solutions at the right column.

Separate into partial fractions

Now we have the simple form of the generating function. However, to understand it better and

occasionally get a closed formula it is very helpful to have it in partial fractions. Partial fraction

means the following:

Given a fraction: P (x)
D1(x)...Dn(x)

,

we want to get: P1(x)
D1(x)

+ ...+ Pn(x)
Dn(x)

where P1, ..., Pn are polynomials.

It is very important to note the difference with the normal partial fraction derivation, where each

Pi(x) is irreducible in Q[x], and therefore a linear, a power of a linear, or an irreducible quadratic

polynomial. However in Z[x] a polynomial can be irreducible in any degree, not just in 1 or 2.

To find the partial fractions, we can once again solve a system of equations, because we have one

equation for each degree of P(x). Since deg(P (x))+1 (there is also the constant term ) is the same

as the number of fractions, we can always solve the system.

The logic of these equations is the following: imagine you already have the partial fraction

decomposition and you want to return to the initial fraction. The contribution of P1(x) to the

numerator would then be:

P1(x) ·D2(x) . . . Dn(x)

The contribution of P2(x) would be:

P2(x) ·D1(x) ·D3(x) ·D4(x) . . . Dn(x)

And so on. Counting the contribution to each degree that every Pi(x) does we have this system of

equations, which we can also solve using Gaussian Elimination.

Try to get a formula from the partial fraction sum Unless the previous ones, there

is not a clear perfect mathematical approach to this one. The only way to get the formula is by

trying to identify each of the fractions as some known generating function with a known formula

and then add up all the formulas.
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Size of the alphabet

1 2 3 4

Pattern

0 z
1−z

z
(1−2z)(1−z)

z
(1−3z)(1−2z)

z
(1−4z)(1−3z)

00 z2

1−z
z2

(1−2z)(1−z−z2)
z2

(1−3z)(1−2z−2z2)
z2

(1−4z)(1−3z−3z2)

000 z3

1−z
z3

(1−2z)(1−z−z2−z3)
z3

(1−3z)(1−2z−2z2−2z3)
z4

(1−4z)(1−3z−3z2−3z3)

0000 z4

1−z
z4

(1−2z)(1−z−z2−z3−z4)
z4

(1−3z)(1−2z−2z2−2z3−2z4)
z4

(1−4z)(1−3z−3z2−3z3−3z4)

Table 6.1: Generating functions for pattern 00 n. . . 00

6.3 Some particular examples

Applying this algorithm we can find the associated generating functions for many patterns.

Pattern 00 n. . . 00 in alphabet of size m

Introducing the following patterns and sizes of alphabets into the self-made program we obtain

table 6.1.

Two patterns appear in this table 6.1.

First, fixing the size of the alphabet (thus, staying in the same column) and letting n be

the size of the pattern then the simple form of the generating function has zn in the numerator

and a degree-n polynomial in the denominator. Second, fixing the size of pattern (thus, staying

in the same row) and letting m be the size of the alphabet we get the denominator of the form

(1−mz) · P (z) where P (z) is 1− (m− 1)z − (m− 1)z2 − ....

Therefore, in general we get the following simple form for a pattern of size n and an alphabet of

size m:

zn

(1−mz)(1−
∑n

k=0(m− 1)zk)

Now if we separate it into two fractions we always get something of the form:

1

(1−mz)
−

∑n−1
k=0 z

k

1−
∑n

k=1(m− 1)zk

To get the formula we showed in a previous chapter that 1
1−mz was equivalent to the formula mn.

In that same chapter we showed how in general the numerator affected the initial terms and the

denominator fixed the recurrence.



90 CHAPTER 6. CONNECTING GENERATING FUNCTIONS AND AUTOMATA

To make it clearer, we can take the example of pattern AAAA ( n = 3 ) in the genetic code

(m = 4).This gives us the following simple form:

A(x) =
z4

(1− 4z)(1− 3z − 3z2 − 3z3 − 3z4
.

From here we separate it into two fractions:

1

(1− 4z)
− 1 + z + z2 + z3

1− 3z − 3z2 − 3z3 − 3z4
.

Then, we know that the solution will be something of the form

A(n) = 4n − Pn,

where Pn is the linear recurrence Pn−3Pn−1−3Pn−2−3Pn−3 = 0 and initial terms equal to 1,4,16

and 64. The initial terms can be extracted from the following.

1. Start with the 1 we have in the numerator.

2. Only following the recurrence we would get 3 · 1 = 3 for the linear term, but we have to add

z, therefore 3 + 1 = 4.

3. For the quadratic term we would get 3 · 1 + 3 · 4 = 15, +1z3 in the numerator we get 16.

4. For the cubic term we would get 3 · 1+ 3 · 4+ 3 · 16 = 63. Again we have to add 1 giving 64.

Note that all the initial terms are powers of 4. This in fact is quite logical since we must get the

terms 0 to 3 equal to 0 because we words cannot contain a pattern bigger than itself. Therefore

in general we know that the recurrence Pn will have n initial terms equal to m0,m1,m2, ...,mn−1.

Having the recurrence and the necessary initial terms we can get the formula for the pattern in

linear time (calculating the recurrence) or constant time, by solving the formula of the recurrence

using the characteristic polynomial explained in the introductory chapter.

Note that since the recurrence grows asymptotically slower than mn then lim inf Pn

mn = 0 and

therefore lim inf mn−Pn

mn = 1 as we see in figure 6.1, with the example of pattern 00 and binary

alphabet which follow the formula 2n − Fn as showed in Chapter 1. Pattern 0 ⋄ 0⋄ n. . . ⋄0 ⋄ 0
and binomials

A possible application of the algorithm created in the previous chapter using gap characters is

counting the words with a particular number of characters. For example the generating function

associated to pattern 0⋄0 counts the number of words containing at least two zeros and the pattern

0 ⋄ 0 ⋄ 0 at least three zeros. We can generate the table depending on the size of the pattern (

counting only the number of zeros ) and fixing the size of the alphabet to binary.Results are shown

in table 6.2
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Figure 6.1: 2n−Fn
2n

Pattern Simple form Simple Fractions Formula

0 z
(1−z)(1−2z)

1
1−2z −

1
1−z 2n − 1

0 ⋄ 0 z2

(1−2z)(1−z)2
1

1−2z −
1

(1−z)2
2n − 1− n

0 ⋄ 0 ⋄ 0 z3

(1−2z)(1−z)3
1

1−2z −
1

1−z + 1
(1−z)2

− 1
(1−z)3

2n − 1− n(n+1)
2!

0 ⋄ 0 ⋄ 0 ⋄ 0 z4

(1−2z)(1−z)4
1

1−2z −
2

(1−z)2
+ 2

(1−z)3
− 1

(1−z)4
2n − 1− n(n2+5)

3!

0 ⋄ 0 ⋄ 0 ⋄ 0 ⋄ 0 z5

(1−2z)(1−z)5
1

1−2z −
1

1−z + 2
(1−z)2

− 4
(1−z)3

+ 3
(1−z)4

+ 1
(1−z)5

2n − 1− n(n+1)(n2−3n+14)
4!

Table 6.2: Pattern 0 ⋄ 0⋄ n. . . ⋄0 ⋄ 0

In general we can see that the simple form of the generating function will be:

zn

(1− 2z)(1− z)n
,

which gives a simple fraction decomposition involving 1
1−2z and all the 1

(1−z)i for 1 ≤ i ≤ n, for

which we determined the formulas in the introduction to generating functions. With this we always

get a formula of the form 2n − 1 − P (x) where P (x) is a polynomial of n − 1 degree divided by

(n− 1)!.

Apart from the interest of getting a generating function to count this type of combinatoric classes,

and the importance of the simplicity of doing so with respect to the difficulty of doing it with

recurrences or formulas, we can find another application.

We can only tell how many patterns appear with a given pattern, without knowing anything

else about those words.Therefore, it is not possible to create a pattern which is equivalent to count

the number of words with exactly n zeros because we would not be able to tell if other zeros do

appear in those words. However, we can subtract generating functions to get other results.

For example, if we want to get the number of words with exactly 3 zeros, we can take the
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Pattern Simple form Simple Fractions Formula

one 0 z
(1−z)2

−1
(1−z) +

1
(1−z)2

n

two 0 z2

(1−z)3
1

(1−z) −
1

(1−z)2
+ 1

(1−z)3
n(n−1)

2!

three 0 z3

(1−z)4
−1
1−z + 3

(1−z)2
− 1

(1−z)3
+ 1

(1−z)4
n(n−1)(n−2)

3!

four 0 z4

(1−z)5
1

1−z −
4

(1−z)2
+ 6

(1−z)3
− 4

(1−z)4
+ 1

(1−z)5
n(n−1)(n−2)(n−3)

4!

m 0 zm

(1−z)m+1

∑m
k=0

(−1)m+k(mk )
(1−z)k

(
n
m

)
Table 6.3: Table for binomials

generating function associated to 0 ⋄ 0 ⋄ 0 which counts the number of words with at least 3 zeros

and subtract the one associated to 0 ⋄ 0 ⋄ 0 ⋄ 0 which counts the number of words with at least 4

zeros. From this we get Table 6.3:

Note the importance of the formula in the last column. Counting the number of words of size m

with 3 zeros is equivalent to
(
n
3

)
, n choose 3, since we have to choose 3 positions to put the zeros

from n possible positions. Using both an algorithm of computer science and combinatorics logic

we get a result that could also be considered arithmetic. To get the binomial
(
n
m

)
we have to look

at the generating function
zm

(1− z)m+1

and look at the nth coefficient.

Moreover, a very interesting pattern occurs with simple fractions since the numerators follow the

famous Pascal’s Triangle, from which we can get the binomials: a great example of combination of

different fields to get an important result.

6.4 Chapter Remarks

In this chapter we analyzed a possible algorithm to get the generating function associated to a

particular pattern. We needed the inspiration of searching automata to then build a system of

equations based in the symbolic method representation. To solve that method we used matrices

and Gaussian Elimination in Particular. After this, we may try separating the simple form into

partial fractions and obtain a formula or obtaining the first coefficients.

However, we also saw that this method was very slow to calculate and thus a program would

be needed to solve reasonably long patterns, which will be explained in the next chapter.



Chapter 7

Programming a solver

The purpose of computing is insight, not numbers. Richard Hamming

As we have shown, all the necessary calculations to get a closed formula are very long, complicated

and tedious. Therefore, programming a solver was not only interesting, but also necessary to

do more complicated projects in a reasonable time. An example of that is that only to get the

generating function for methionine which has only size 3, the author had to stop his calculations

after 3 pages without even getting through half of the Gaussian Elimination. Therefore, all the

generating functions shown in the previous chapter were calculated with some of the next programs.

Combinatorics and recurrences were used to check the programs with some of the simpler cases.

Some of the programs, however, turned out to be also of a high difficulty, not so much because of

the necessity to use complex programming tools (which is also true, such as vectors of 4 dimensions),

but the complexity of the programs themselves, as the reader will later see. Therefore, to simplify

the reading none of the following codes is the execution one (they are all in the appendix), but are

what we call pseudo codes which explain the algorithm without giving all the details as the real

codes have some hundreds of lines. In this case the author decided to write in a simplification of

C++ language in order to facilitate to the interested reader the lecture of the real codes.

In fact, more than one approach was necessary until very satisfactory results were accom-

plished; this chapter reflects with its structure the actual procedure of search of a good approach

to program a pattern solver into generating functions.

Again, the procedure of building the automata has already been explained. Note that the

function that calculates it is called in Algorithm 9.2, line 3.

93
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7.1 From pattern to matrix

The hard part of obtaining the matrix is putting the z’s in the correct places. Taking the 1’s from

the identity and subtracting the matrix with the z’s is not shown because the complexity of the

code increases substantially because we have to store polynomials and not integers.However, note

that the idea behind it, is straightforward. The explanation line by line of this algorithm can be

Algorithm 4 Getting the Matrix

Require: string P, integer z = |Σ|

d← ComputeAutomata(d, P, z)

m← size(P )

v ← matrix(m+ 1bym+ 2)

for all i ∈ d do

for all j ∈ d[i] do

v[i][d[i][j]]← v[i][d[i][j]] + 1

end for

end for

return v

found in the annex. Here we will only indicate the main point, inside both for’s: Given the row (

determined by the first for ), check every column (possible character in the alphabet ). These two

parameters describe an arrow. The start state is clearly the row we are analyzing, and the end

state is saved in d[i][j]. Therefore we have to add a z (+1) to v[i][d[i][j]].

Now we only have to subtract this matrix from the identity, add the column with the solutions

(all 0’s and a 1 in the last row). Let us now analyze how we solve the following system.

7.2 From matrix to Generating Function

7.2.1 First approach to Gaussian Elimination with real numbers

The author found convenient to first write a program to solve a system of equations in the reals.

That program was much simple than the one using polynomials, as it will later be analyzed, but it

was very helpful to get the initial idea. Therefore, let us use this program to illustrate the general

idea of the program to later see the adjustments to polynomials. Again, the real program can

be found in the appendix, as we will use a pseudocode: This relatively simple program shows the
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Algorithm 5 Gaussian Elimination

Require: matrix v

n← size(v)

ok ← true

for i = 0 to n− 1 and while ok do

if v[i][j] == 0 then

ok ← false

for j = i+ 1 to n− 1 and while ok do

if v[j][i] ̸= 0 then

aux← v[i]

v[i]← v[j]

v[j]← aux

ok ← true

end if

end for

end if

if ok then

divisor ← v[i][i]

for j = 0 to n do

v[i][j]← v[i][j]/divisor

end for

for j = 0 to n− 1 do

if j ̸= i and v[j][i] ̸= 0 then

val← v[j][i]

for k = 0 to n do

v[j][k]← v[j][k]− (v[i][k] · val)

end for

end if

end for

end if

end for

if ok then

print v

else

print ”Depending system”

end if
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procedure to do the Gaussian Elimination for reals, however for functions it is much harder. First,

instead of storing it in a matrix (Dimension 2), we will have to store it in a Dimension 4 container.

To store every function we need a size 2 container, each storing a polynomial: 1 container for the

numerator and 1 for the denominator. Then each polynomial is itself a linear array containing

each of the coefficients. Moreover, for the purposes of our research, we need every polynomial to

have integer coefficients.

The author considered the option of creating a Dimension 5 container. Instead of being two

arrays, both the numerator and denominator would instead be an array of polynomials. The

advantage of doing so would be an easy multiplication, division and simplification of fractions.

However, the fact of having to add or subtract at one point in the algorithm made it hard to do

this approach and working in 5 dimensions is substantially harder than it is to work with 4, which

is already hard. Therefore, after trying, the author decided to do the approach in dimensions 4.

Now let us analyze the dimension 4 algorithm.

• MultiplicationConsider two polynomials of degree n and m. Can multiply and then add

all the possibilities of multiplications, as we do with the cartesian product or we do in

school. This gives us a Θ(nm) algorithm, which translates into a O(n2) algorithm with

both polynomial of at most degree n. The author considered the option of doing a known

algorithm in O(n lg(n)), but there is a high constant term in this algorithm since we have to

do three procedures (called Evaluation, Pointwise multiplication and Interpolation), which

makes it useless for polynomials of very low degree as ours.

• Sum and subtraction To add or subtract, we can simply do:

A

B
− C

D
=

AD −BC

AD

or the equivalent for addition.

• Division: we use again multiplication:

A

B
/
C

D
=

AD

BC

Since all the algorithms are based in multiplication we will only show the algorithm for multipli-

cation:

This is exactly the algorithm described previously doing the cartesian product of the polyno-

mials. Note that VI means vector of integers, which stores a polynomial. Also note that the size

of v is A+B− 1 because the size of A is deg(A)+ 1 since we also have the constant term, and the

same for B. Therefore the size of v must be deg(A)+ deg(B)+ 1 = A− 1+B− 1+1 = A+B− 1.
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Algorithm 6 Multiplication of Polynomials

Require: polynomial a, polynomial b

v ← polynomial of size(size(a)+size(b)-1)

for all i ∈ a do

for all j ∈ b do

v[i+ j]← v[i+ j] + (a[i] · b[j])

end for

end for

return v

Problems to this algorithm

This algorithm has a very high number of multiplications: apart from being a slow computation,

it increases the degree of the polynomials very fast.

In fact, the major problem turned out to be the second one and not the first. Having to

change the size of a vector (which can have a great cost) or multiplying polynomials did not cost so

much as having to deal with both high degrees and high coefficients. Therefore there is the major

necessity of reducing both, since there is a maximum capacity for both size of the containers and

size of the coefficients.

7.2.2 First approach: guess and check

To solve this problem it was necessary to create a function to simplify the coefficients. Factorizing a

polynomial, as with integers, has a sub-exponential complexity, so it was not a reasonable approach.

The other approach was to do the Euclidean algorithm to find the Greatest Common Divisor,

however it could not be done in Z, for example with x2 + 2x2 + x3 and 2x2 + 2x since we cannot

eliminate the the coefficient of third degree.

The only possible approach in Z was the most naive approach: to create a list of 14.000

irreducible (in Z) polynomials of at most degree 5 (in 2 hours of computation, the program is

added in the annex) and then do the the algorithm represented in 7.

Explanation of the algorithm: Given the list of possible divisors, we check every one of

them, if both numerator and denominator are divisible. Then we divide both of them by this

divisor, in case one or both of them are not divisible, we continue to look through the list of

divisors. Note that if both of them are divisible in the next loop we will continue to look at the

same divisor since it is possible that they share this divisor more than once.
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Algorithm 7 Simplifying a fraction of polynomials

Require: polynomial num, polynomial den

for all divisors D in the list do

while D|num and D|den do

num← num/D

den← den/D

end while

end for

7.2.3 Second approach: Euclidean algorithm with reals

However, there is a way of using the Euclidean algorithm, going from Z to R. This approach,

was not the first option because there was a loss of precision and rigor, since we stated that the

coefficients had to be in Z: it is quite clear that, even working in R[x], the results should be in

Z[x] since the results should not change depending in the method. However, the hypothesis was

that there could be a loss of precision with reals that modified the output, as it happened.

The Euclidean algorithm is a simple,old and still very useful algorithm, which uses the defini-

tion of the greatest common divisor.

The Euclidean algorithm is represented in Algorithm 8.

Algorithm 8 Euclidean Algorithm

Require: a,b

if b==0 then

return a

else

return EuclideanAlgorithm(b,a mod b)

end if

Theorem 7.2.1 Correctness of the Euclidean algorithm:

Proof: Let g = GCD(a, b), by definition g is the biggest integer so that it divides both a and b.

Take a = bq + r where q,r∈ Z and r<b.

g | b⇒ g | bq. Moreover, by definition g | a, therefore g | (a− bq).
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Since a− bq = r, g must also divide r. Therefore gcd(a, b) = gcd(b, r).

Now, since r < b the sequences of b are strictly decreasing. A strictly decreasing sequence of

positive integers must at some point arrive at 0.

However, everything divides 0 ( since a · 0 = 0 ), therefore gcd(a′, 0) = a′.

Going back, we know that this a’ is the gcd of the initial a and b. �
We proved the Euclidean algorithm for integers to use more familiar terms, however note that this

prove can be done in any field with division. Division is defined formally as: given b ̸= 0 and a ∈ F

there exist q, r ∈ F such that a = bq + r and r<b.Note, for instance, that as we showed Z[x] had

no division, but Q[x] does have division.

Lemma 7.2.2 Existence of division in R[x].

Proof: Take a, b ∈ Q[x], suppose deg(a) ≥ deg(b). Otherwise deg(a) < deg(b) let q = 0 and r = a

and we are done.

First, divide both polynomials by the leading coefficient of b, making it 1. We can do this

since division certainly exists in Q. Now increase q by anx
n−m where n is the degree of a, m is the

degree of b and an is the leading coefficient of a. Note that this reduces at least by one the degree

of a− bq and therefore of r.

Since we can do this as long as deg(b) < deg(a), we can use the same fact we used to prove the

Euclidean algorithm to see that at some point we can make deg(r) < deg(b), finishing the proof.

�
To perform the Euclidean algorithm to find the greatest common divisor to after divide both

numerator and denominator by it, only an algorithm for division is needed. However, the algorithm

used for integers works very similarly as it does in rationales.

The type of C++ variables used to implement this algorithm were ’doubles’, used to store

reals and not rationales. This first had a reason: using two integers to represent each coefficient

would be both more complex to program and as inefficient as integers itself, because the size of

the fractions would also grow. However, doubles have also a limit of precision of around 9 decimal

places. This create a lot of problems since, for example 2.000000001 does not divide 10. To

solve them, some margin of error was added, and periodically, reals very similar to integers were

converted to integers such as 9.9999 to 10.0 or 0.00000023 to 0.
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However, although the performance increased in time ( since the Euclidean algorithm is much

faster than guess and check ) and precision being able to generate functions for sequence of 7 binary

digits instead of 3. However, this could not be considered enough.

7.2.4 Third approach: ZP

ZP is the whole numbers considered modulo a prime. Therefore some examples would be Z2,Z23

or Z215443. In Z2 all odd numbers are equal to 1 and all even numbers are equal to 0. In Z23 all

numbers of the form 17 + 23k would essentially be equal to 17, and all the numbers of the form

13 + 23k would be equal to 13, etc.

ZP satisfies a lot of properties that other rings do not. For example, in ZP every non-zero

element divides 1 as proved in Theorem 7.2.3. 1
15 mod 23 is 20, and 1

15 mod 215443 is 114903;

this means that 15 · 20 ≡ 1 mod 23 and 15 · 114903 ≡ 1 mod 215443.

Theorem 7.2.3 Every non-zero element of Zp is a unit.

Proof: Notice that every number that in order for a not to be coprime with p is GCD(a,p)=p,

since GCD=1 implies they are coprime and by definition, P has only 1 and itself as divisors. But

P | a→ a ≡ 0 mod p. Therefore if a is not 0 mod p, it is coprime with p. Now we can prove:

GCD(a,m) = 1⇔ a is a unit mod m

First let us prove GCD(a,m) = 1→ a is a unit mod m: u · a+m · b = 1 for some a, b ∈ Z follows

from the Diophantine equation ( the author has proved it from the axioms, but it is not in the

limits of this work ).

ua = 1 +m(−b)

ua ≡ 1mod m (by the definition of mod)

u ∈ Um by definition of unit)

Now we can prove the other sense (which is following the proof in the inverse sense):

u ∈ Um

ua ≡ 1mod m (by definition of unit)
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ua = 1 +m(b′)by definition of mod)

ua+m(−b′) = 1

GCD(a,m) = 1by the Diophantine equation

�
If every non-zero element divides 1, every element divides every element in ZP since A

B = A
1 ·

1
B =

A · 1
B .

Therefore if we take a polynomial of coefficients with degrees in ZP we will have division and

therefore we will be able to do the Euclidean Algorithm as proved before.

The only problem that arises is how to compute 1
B .

This problem is equivalent to say: what is the number X that satisfies X ·B ≡ 1 mod p?

We can use Fermat’s Little Theorem ( 7.2.4) which states:

ap−1 ≡ 1 mod p,

Let us start with:

X ·B1 ≡ 1 mod p,

X ≡ B−1 mod p,

and now we can use the fact that Bp−1 ≡ 1 mod p to get:

X ≡ B−1 ·Bp−1 = Bp−2 mod p.

Using binary exponentiation we can get Bp−2 in O(lg(p)) time, which is very fast. The algorithm

for binary exponentiation is illustrated in Algorithm 9 Let us take the example with 223:

1. 223 = 2 · (211)2

2. 211 = 2 · (25)2

3. 25 = 2 · (22)2

4. 22 = (21)2

5. 21 = 2 · (20)2

6. 20 = 1
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Algorithm 9 Binary exponentiation

Require: int base, int exponent

if EXPONENT==0 then

return 1

end if

aux← Binaryexponentiation(base, ⌊base/2⌋)

aux← aux2

if exponent mod 2==0 then

aux← aux · base

end if

return aux

We can now do back substitution to get the result in very few calculations.

Theorem 7.2.4 Fermat’s Little Theorem:

Proof:

ap−1 ≡ 1mod p

To prove it we will simply prove its generalization:

aφ(m) ≡ 1mod m

Remember that φ(m) means at the same time the number of units in Zm and the number of

elements coprime with m which are less than m. This equivalence follows from Theorem 7.2.3.

For every unit in Um take:

a · ui = vi

Multiply all the products getting:

Π
φ(m)
i=1 a · ui ≡ Π

φ(m)
i=1 vi

Π
φ(m)
i=1 a ·Πi=1ui ≡ Π

φ(m)
i=1 vi

Since{u1, u2, ..., uφ(m)} is a permutation of {v1, v2, ..., vφ(m)} (proved in Lemma 7.2.5) Π
φ(m)
i=1 ui =

Π
φ(m)
i=1 vi. The we can divide by the inverse of this product (since they are all units ) getting:

Π
φ(m)
i=1 a ≡ 1mod m

aφ(m) ≡ 1mod m
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�

Lemma 7.2.5

Proof: {u1, u2, ..., uφ(m)} is a permutation of {v1, v2, ..., vφ(m)}.

Suppose:

u · aj ≡ vi

and

u · ag ≡ vi

then

uaj ≡ uag

We can multiply by u−1,

aj ≡ ag

which proves that the function is 1-to-1.

Since GCD(a, b) = 1 and GCD(a, c) = 1→ GCD(a, bc) = 1 Um is closed under multiplication

(applying Theorem 7.2.3). A function which is 1-to-1 and goes from a set S to the same set S

must also be onto, and therefore a bijection. (All these concepts are defined at the beginning of

the study ). Therefore {u1, u2, ..., uφ(m)} is a permutation of {v1, v2, ..., vφ(m)}. �
Now we can perform Gaussian Elimination with a lot of precision since we will never get an overflow

( with integers bounded by p ) or decimal problems ( since they are integers ). The only problem

that might arise is the uncertainty that ZP implies. We will have to assume, unfortunately, that

every coefficient lies between −1
2 and +P

2 . This is not a major catastrophe for two reasons:

1. Note that, for sure, working with numbers less than our limit but over the square root of

this limit is dangerous since the multiplication would create an overflow. To be cautious we

can be sure to have no overflow problems by working with numbers less than the cubic root

of our limit. The biggest prime number less than the cube root of 263 − 1, our limit, is the

already mentioned 215,443. It is very reasonable to assume that, for quite small or normal

patterns and alphabets, the coefficients cannot get bigger than 100,000.
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2. Another very important tool we can use is the Chinese Remainder Theorem.

The Chinese Remainder Theorem (proved outside this study ) states that given amod m and amod

n, there is exactly one a mod LCM(m,n) that satisfies both congruences. Since we are always using

primes LCM of all the primes is equivalent to the product of the primes, which grows exponentially.

For example, the product of primes less than 100 is 2305567963945518424753102147331756070

or the product of the 5 bigger primes less than 3
√
263 − 1 is 3 orders of magnitude bigger than

Avogadro’s number. In other words, we can easily obtain very big ranges that will procure a

reasonable credibility to our results.

By modifying the automaton (to process different types of patterns or combinations of pat-

terns) those programs will easily adjust to get the generating function. As one can see, in this

chapter math greatly influenced our Computer Science algorithms, showing again the value of an

interdisciplinary approach. Furthermore, apart from a theoretically interesting result it was a nec-

essary implementation. Some of the applications of this program were the calculations done in the

previous chapter and the applications performed in the next chapter.



Chapter 8

Applications

Science floats on a sea of mathematics

In this last chapter we will analyze genetics with the tools we developed in the previous chapters

to show one of the many possible implementations that type of analysis could have.

Important note: It is very important to take into account that this chapter is very experi-

mental in the sense that it shows what a possible research could be and does not have the intention

of proving or showing anything with certainty. Although some specifical genetical knowledge has

been acquired by the author in order to do this experiment, it was out of the limits of the initial

objectives (which ended in the previous chapter ).

In this case we took the gene of Cystic Fibrosis as a representative of a human gene [19];

although it would be desirable to take more than one gene.

The analysis is done at the level of nucleotides for the following reasons:

1. It is a small alphabet: perfect for our analysis

2. With this we have a huge amount of data ( more than 100,000 nucleotides )

3. Mutations and therefore evolution is done at the level of nucleotides

4. Some parts of genes do not go three by three like the coding genes

Although the analysis is done at the level of nucleotides, the analysis will be done by searching each

amino acid as a structure, which is equivalent to 3 nucleotides. The author is conscious that genes

105
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do not function in every possible shift, as they will be analyzed now, however it was considered

interesting to take this completely new approach.

The first step is to create a table with the generating function associated to every possible

codon, a triple of nucleotides found in Table 8.1.

Last base

A C G U

AA z3

(1−3z)(1−2z−2z2−2z3)
z3

(1−4z)(1−4z+z3)
z3

(1−4z)(1−4z+z3)
z3

(1−4z)(1−4z+z3)

AC z3

(1−4z)(1−4z+z2−3z3)
z3

(1−4z)(1−4z+z3)
z3

(1−4z)(1−4z+z3)
z3

(1−4z)(1−4z+z3)

AG z3

(1−4z)(1−4z+z2−3z3)
z3

(1−4z)(1−4z+z3)
z3

(1−4z)(1−4z+z3)
z3

(1−4z)(1−4z+z3)

AU z3

(1−4z)(1−4z+z2−3z3)
z3

(1−4z)(1−4z+z3)
z3

(1−4z)(1−4z+z3)
z3

(1−4z)(1−4z+z3)

CA z3

(1−4z)(1−4z+z3)
z3

(1−4z)(1−4z+z2−3z3)
z3

(1−4z)(1−4z+z3)
z3

(1−4z)(1−4z+z3)

CC z3

(1−4z)(1−4z+z3)
z3

(1−3z)(1−2z−2z2−2z3)
z3

(1−4z)(1−4z+z3)
z3

(1−4z)(1−4z+z3)

CG z3

(1−4z)(1−4z+z3)
z3

(1−4z)(1−4z+z2−3z3)
z3

(1−4z)(1−4z+z3)
z3

(1−4z)(1−4z+z3)

CU z3

(1−4z)(1−4z+z3)
z3

(1−4z)(1−4z+z2−3z3)
z3

(1−4z)(1−4z+z3)
z3

(1−4z)(1−4z+z3)

GA z3

(1−4z)(1−4z+z3)
z3

(1−4z)(1−4z+z3)
z3

(1−4z)(1−4z+z2−3z3)
z3

(1−4z)(1−4z+z3)

GC z3

(1−4z)(1−4z+z3)
z3

(1−4z)(1−4z+z3)
z3

(1−4z)(1−4z+z2−3z3)
z3

(1−4z)(1−4z+z3)

GG z3

(1−4z)(1−4z+z3)
z3

(1−4z)(1−4z+z3)
z3

(1−3z)(1−2z−2z2−2z3)
z3

(1−4z)(1−4z+z3)

GU z3

(1−4z)(1−4z+z3)
z3

(1−4z)(1−4z+z3)
z3

(1−4z)(1−4z+z2−3z3)
z3

(1−4z)(1−4z+z3)

UA z3

(1−4z)(1−4z+z3)
z3

(1−4z)(1−4z+z3)
z3

(1−4z)(1−4z+z3)
z3

(1−4z)(1−4z+z2−3z3)

UC z3

(1−4z)(1−4z+z3)
z3

(1−4z)(1−4z+z3)
z3

(1−4z)(1−4z+z3)
z3

(1−4z)(1−4z+z2−3z3)

UG z3

(1−4z)(1−4z+z3)
z3

(1−4z)(1−4z+z3)
z3

(1−4z)(1−4z+z3)
z3

(1−4z)(1−4z+z2−3z3)

UU z3

(1−4z)(1−4z+z3)
z3

(1−4z)(1−4z+z3)
z3

(1−4z)(1−4z+z3)
z3

(1−3z)(1−2z−2z2−2z3)

Table 8.1: Generating functions associated to every codon

As one can see, although there are some repetitions, it may vary substantially between different

codons. We can go further in our analysis and consider amino acids, which are associated to one

or more codons. For this, we used the program that determined if in a text there is any of a

list of patterns to analyze amino acids getting Table 8.2. This time we added a partial fraction

decomposition to show a first image of what could be a possible formula.
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Codon Simple Form Partial fraction

Alanine GC 4x3

1−8x+17x2−4x3
1

1−4x −
4x

1−4x−x2 − 1

Arginine CG ,AGA,AGG 6x3+4x5

1−8x+18x2−10x3+9x4−4x5
1

1−4x −
2x3+4x

1−4x+2x2−2x3+x4 − 1

Asparagine AAU,AAC 2x3

1−8x+16x2+2x3−8x4
1

1−4x −
1

1−4x+2x3

Aspartic acid GAU,GAC 2x3

1−8x+16x2+2x3−8x4
1

1−4x −
1

1−4x+2x3

Cysteine UGU,UGC 2x3

1−8x+17x2−6x3+8x4
1

1−4x −
1+x2

1−4x+x2−2x3

Glutamic acid GAA,GAG 2x3

1−8x+17x2−6x3+8x4
1

1−4x −
1+x2

1−4x+x2−2x3

Glutamine CAA,CAG 2x3

1−8x+16x2+2x3−8x4
1

1−4x −
1

1−4x+2x3

Glycine GG 4x3

1−7x+9x2+12x3
1

1−4x + 1
3 −

4
3−9x−9x2

Histidine CAU,CAC 2x3

1−8x+17x2−6x3+8x4
1

1−4x −
1+x2

1−4x+x2−2x3

Isoleucine AUU,AUC,AUA 3x3

1−8x+17x2−5x3+4x4
1

1−4x −
1+x2

1−4x+x2−x3

Leucine CU ,UUA,UUG 6x3−2x4

1−8x+17x2−2x3−10x4+8x5
1

1−4x −
1+x2

1−4x+x2+2x3−2x4

Lysine AAA,AAG 2x3

1−7x+9x2+10x3+8x4
1

1−4x −
1+x+x2

1−3x−3x2−2x3

Methionine AUG x3

1−8x+16x2+x3−4x4
1

1−4x −
1

1−4x+x3

Phenylalanine UUU,UUC 2x3

1−7x+9x2+10x3+8x4
1

1−4x −
1+x+x2

1−3x−3x2−2x3

Proline CC 4x3

1−7x+9x2+12x3
1−4x
+

1
3 −

4
3(1−3x−3x2)

Serine UC ,AGU,AGC 6x3−4x5

1−8x+17x2−2x3−9x4+4x5
1

1−4x − 1− 2x3−4x
x4−2x3−x2+4x−1

Threonine AC 4x3

1−8x+17x2−4x3
1

1−4x − 1− 4x
1−4x+x2

Tryptophan UGG x3

1−8x+16x2+x3−4x4
1

1−4x −
1

1−4x+x3

Tyrosine UAC,UAU 2x3

1−8x+17x2−6x3+8x4
1

1−4x −
1+x2

1−4x+x2−2x3

Valine GU 4x3

1−8x+17x2−4x3
1

1−4x − 1− 4x
1−4x+x2

Stop UAA,UAG,UGA 3x3

1−8x+16x2+3x3−12x4
1

1−4x + 1
5−5x −

3(x+2)
5(1−3x−3x2)

Table 8.2: Generating function associated to every amino acid

We can look at the first coefficients of each generating function to look at how many texts there

are that contain at least one time one of the patterns of a certain amino acid. In this case the sizes

shown are 3,4,5 and 6; for example for alanine there would be 4 possible texts containing alanine

of size 3, 32 of those of size 4, 188 of size 5 and 976 of size 6.

By dividing by 4n we can get the probability that a text of size n contains Alanine, or any

other amino acid. Again the percentages for n = 3 to 6 are shown.

Finally a formula, if found, is shown. Those formulas were found by using a program [18] to

solve the recurrences indicated by the partial fraction decompositions shown in table 8.2; however,
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the program was not powerful enough to find a formula for the recurrence; another example of

the difficulty of dealing with recurrences to solve this complex structures. In Table 8.3 we find

those three indicators, first coefficients, first probabilities and a formula, that would help us in the

comparison with an actual gene.

First coefficients First % Formula

Alanine 4,32,188,976 6.2,12.5,18.4,23.8 4n + 2(2−
√
3)n√

3
− 2(2+

√
3)n√

3

Arginine 6,48,280,1436 9.4,18.75,27.3,35

Asparagine 2,16,96,508 3.1,6.2,9.4,12.4

Aspartic acid 2,16,96,508 3.1,6.2,9.4,12.4

Cysteine 2,16,94,492 3.1,6.2,9.2,12

Glutamic acid 2,16,94,492 3.1,6.2,9.2,12

Glutamine 2,16,96,508 3.1,6.2,9.4,12.4

Glycine 4,28,160,820 6.2,10.9,15.6,20

Histidine 2,16,94,492 3.1,6.2,9.2,12

Isoleucine 3,24,141,735 4.7,9.4,13.8,17.9

Leucine 6,46,266,1358 9.4,18,26,33.2

Lysine 2,14,80,414 3.1,5.5,7.8,10.1

Methionine 1,8,48,255 1.6,3.1,4.7,6.2

Phenylalanine 2,14,80,414 3.1,5.5,7.8,10.1

Proline 4,28,160,820 6.2,10.1,15.6,20 4n + (3−
√
21)n+1−(3+

√
21)n+1

2n−13
√
21

Serine 6,48,278,1420 6.4,18.7,27.1,34.7

Threonine 4,32,188,976 6.2,12.5,18.4,23.8 4n + 2(2−
√
3)n√

3
− 2(2+

√
3)n√

3

Tryptophan 1,8,48,255 1.6,3.1,4.7,6.2

Tyrosine 2,16,94,492 3.1,6.2,9.2,12

Valine 4,32,188,976 6.2,12.5,18.4,23.8 4n + 2(2−
√
3)n√

3
− 2(2+

√
3)n√

3

Stop 3,24,144,759 4.7,9.4,14,18.5 4n − (21−4
√
21)((3−

√
21)n)+(21+4

√
21)(3+

√
21)n)−7·2n

2n·35

Table 8.3: Theoretical results for aminoacids

We then took the gene of Cystic Fibrosis ([19]), looked at the start and end point of introns and

exons, then divided the genes into introns and exons to analyze both separately.

We then looked at the frequency of each amino acid to appear in a substring of the exon/intron
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of size n. For example Figure 8.3 shows the results for n = 7. The rest of the calculations can be

found in the Appendix.

Figure 8.1: Appearances of amino acids in the gene for size 7

After this, we calculated all the percentages of each amino acid of appearing in a substring of

size n. Again, we show the results for size n = 7 in Figure 8.2.

As one can see, some notable differences can be seen between what theory expects and the

actual results such as for the amino acid Alanine. We can calculate the average difference in

percentage between exons and theory, introns and theory and exons and introns and compare those

results. To get an approximate result we should divide the percentage by the average percentage

of appearance in theory, getting figure 8.3. As one can see, those results differ significantly from

theory, supporting the idea of selection in those genes, instead of being completely random.

We can go further in our analysis and sketch a graph with the theoretical probability in the

x-axis and the actual probability in the y-axis, as found in Figure 8.4.

As one can see from both graphs we have a slight (R2 = 0.4 − 0.6) correlation between

theory and practice. This could indicate that some random component can be found in both

exons and introns, but that both exons and introns are not random (since they have been selected

). Surprisingly we can see that introns are even more ’antirandom’ than exons, which would

support the theory that they are not ’junk’ DNA as it was thought. The fact that they are more
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Figure 8.2: Comparison of frequencies of amino acids for size 7

’antirandom’ is not significant as we have to remember that exons actually work only in some

particular shifts, in which they are probably even more ’antirandom’.

Note: the fact that they are all slightly decreasing is probably due to the fact that as they grow

bigger and bigger percentages tend to be more similar. For example, at infinity all percentages for

all aminoacids should be 100% and thus ’antirandomness’ will be 0.

Another very interesting point should be analyzed. If one examines the sum of the percentages

in theory, exons and introns; it will observe that all are less than 500%. Our first thought might be

that, since in length 7 there are 5 patterns of size 3, the sum of the probabilities should add up to

500%. However, this is not case; this is because in a word we can have a pattern more than once,

but for our purposes this does not change anything for that pattern, but the total probability will

decrease since maybe only 4 patterns or even 3 may be counted for each substring instead of 5.

As one can see if genes were completely at random the probabilities would add up to 448%, but

in practice this quantity is smaller both in exons and in introns.This means that more repetitions

insight a substring are found in genes than they are at random, therefore we can conclude that
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Figure 8.3: Graphic showing ’antirandomness’

genes are more repetitive than the average, as it can be seen in figure 8.5 were both graphs are

bigger than one.

In conclusion, generating functions along with a searcher can help us determine some facts of

the symmetry and randomness of a string, such as a gene. Although this small research cannot

make strong conclusions, it is a small taste of what could be done with the combination of this

tools.
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Figure 8.4: Theory versus real

Figure 8.5: Graphic showing ’repetitiveness’



Chapter 9

Conclusions

Answer the questions, then question the answers. Glenn Stevens

9.1 General conclusions

We started from basic combinatorics, formulas and recurrences, we then introduced a much more

complex tool: generating functions. After proving some properties of those objects and use them

in various fields of mathematics. After this, we introduced the relation between generating func-

tions and enumerative combinatorics in general and showing how the use of generating functions

simplifies significantly some very hard problems.

However, we still could not solve our main question: How many words of size n contain a

fixed pattern P? Then, we moved to the algorithmic part, by showing and analyzing three different

methods to solve the string-matching problem: two of them were quadratic in worst case and the

last one, automata, was linear, hence it was much better. We then moved to the crucial part of

the research, merging both parts together to solve the hardest question. Not only that, but all

the different variations we created in the algorithmic part could be profited to also find generating

functions for all those combinations of patterns. This time, the only problem were the tedious

calculations that had to be done; to solve this problem, we created a program that reproduced

the algorithm we explained, mainly doing the conversion between the automata transition function

and a matrix and then programming Gaussian Elimination for functions to get the solutions of the

system.

Finally, we gave a taste of a possible type of research that could be done thanks to this study

113



114 CHAPTER 9. CONCLUSIONS

by analyzing genomic sequences.

By defining a new mathematical object, we could prove a great diversity of important theorems

in mathematics from the cos2(x)+ sin2(x) = 1 in geometry to the Leibnitz rule in Calculus. Simi-

larly, to make our pattern solver into generating functions, we had to develop a whole arithmetical

base in modulus p, which was also interesting. On the other hand, it was also of great interest

to study mathematically the complexity of some algorithms which in fact depend in very complex

structures such as words, by doing a probabilistic analysis and analyzing automata theory. All in

all we can conclude, that the learning part of this study was done satisfactorily.

After the learning part,we managed to solve the main question of the research by using all

the theory we had learned and implemented. However, we went further by making an automatic

solver, which is probably one of the more complicated processes of this study and one of the most

important results.

We used it to find generating functions and formulas for some special patterns, although it is

important to see that we could have done it for any pattern. Not only that, but any combination

of patterns using ’and’, ’or’ and ′⋄′ could be constructed using the described methods.

Finally, we were able to create a specific application outside mathematics, combinatorics and

computer science by analyzing genomic sequences. This showed how this study could have an

application outside the study itself even if we started from very abstract mathematical ideas that

seem to have absolutely no connection to reality showing a path from pure mathematics to more

applied sciences.

Finally this study pretends to be a clear example of a polyvalent approach resulting in much

deeper and complex results than the simple approach would have got.

Therefore, this research satisfied all its initial objectives by answering with precision its initial

questions, analyzing specifical cases, creating new algorithms and finding applications.

9.2 Further research

The power of the combination of generating functions with automata being immense, a lot of

possible ideas were found, but unfortunately the author had to stop at some point. We could divide

it into two topics, more mathematical and computational theoretical studies and applications.
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Possible applications

• It is very recommendable to do the last research introducing data from more human genes.

• We could continue a genetic search for patterns by introducing more types of patterns such

as the ones containing the ⋄ character or longer patterns.

• We could compare different species and see if there are significant differences in randomness

and how superposable they are.

• We could also study music as a sequence of signs, as we did with the genetic code and find

particular repetitive patterns.

• Another very interesting application, which was already considered and studied, would be

to analyze stock exchanges or currency prices. For example, we could assign numbers from 1

to 5 depending on the level of absolute change in one day, thus measuring roughly volatility

of the stock of a company like Apple or the value of the euro with respect to the dollar, and

then look how random those sequences are and how repetitive they are. This would answer

to questions like: ”are there periods of clearly more volatility than others?”. We could do

the same, but instead of assigning a number from 1 to 5 depending in the change, we could

put 1 and 2 a descent of the price, a 3 a stability, and a 4 and a 5 a rise of prices and then

analyze changes.

Math and Algorithmic ideas

• This research paper inspired a lot of mathematical and computer science questions that could

be analyzed. For instance, we showed
∑n

k=0

(
n
k

)
= 2n and

∑n
k=0

(
2n
2k

)
= 22n−1; what is, in

general,
∑n

k=0

(
a·n
a·k
)
?

• A lot of small questions can be asked and solved using special patterns. For example: what is

the best position to put a ⋄ in an n-character word to maximize its probability of appearing?

• Using the program that search for pattern α and β, we could search for α and α divided by

the cases of appearing only one α, obtaining the probability of multiple appearance of α and

relate this probability with the form of generating functions of pattern α.

• The presentation of the study done by Josep Peya and Antoni Sánchez of Aula Escola

Europea about Markov Chains [12], inspired a very powerful combination of those objects

with automata and therefore with generating functions. Since for each state we know the

last character received and the arrow represents the future character, we can calculate the

probability of the arrow using the idea behind Markov Chains.
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Final Note The author continued its research after presenting the work to his school. The key

elements of this research are the following:

• Proving formally the complexity of all the automata and algorithms shown in the paper and

some other theorems mentioned there.

• Designing a program to work with Markov Chains applied to Generating Functions. This

program and this tool in general can be very useful to solve problems of probabilities or

mathematical expectation even if iterations go to infinity such as the problem shown in [26].

• The start of an extension of this research was attempted by analyzing other algorithms

such as Knuth-Morris-Pratt or Aho-Corasick in a very similar way to the one done with

automata theory, but using post-college math, making this research even more challenging

and interesting.

• Using a previous experience in fractals, the author studied a stock exchange value in short

and long term periods to see if it satisfied the same properties. Although properties were

similar, some differences were found such as that smaller periods of time tended to have

more random outcomes. This could lead to a very interesting study of stock exchange and

currencies using generating functions and multifractal theory.



Appendix

Proofs

Found in Chapter 1:

Theorem .0.1
n∑

k=0

(
2n

2k

)
=

n−1∑
k=0

(
2n

2k + 1

)

Proof: We start by simply doing:

(−1 + 1)n = 0n

Again, the Binomial Theorem implies:

(−1 + 1)n =
n∑

k=0

(
2n

2k

)
−

n−1∑
k=0

(
2n

2k + 1

)
thus,

n∑
k=0

(
2n

2k

)
−

n−1∑
k=0

(
2n

2k + 1

)
= 0.

n∑
k=0

(
2n

2k

)
=

n−1∑
k=0

(
2n

2k + 1

)
.

�

Theorem .0.2
n∑

k=0

(
2n

2k

)
= 22n−1
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Proof: For Theorem 1.2.1 we have:

2n∑
k=0

(
2n

k

)
= 22n

We can split it into odd and even k’s getting:

n∑
k=0

(
2n

2k

)
+

n−1∑
k=0

(
2n

2k + 1

)
= 22n

Now we can apply Theorem .0.1 getting:

n∑
k=0

(
2n

2k

)
=

22n

2
= 22n−1

�
Found in Chapter 2:

Theorem .0.3 sin′(x) = cos(x)

Proof: sin′(x) =
∑∞

n=0
(−1)n·2n
(1+2n)! x

2n−1 =∑∞
n=0

(−1)n

(2n)! x
2n = cos(x). �

Theorem .0.4 cos′(x) = −sin(x)

Proof: sin′(x) =
∑∞

n=0
(−1)n·2n

(2n)! x2n−1 =∑∞
n=0

(−1)n

(2n−1)!x
2n−1

We substitute n for n+ 1.∑∞
n=0

−(−1)n

(2n+1)!x
(2n+1) = −sin(x). �

Further Analysis

Perfect powers

Starting with our basic generating function:
∑∞

n=0 x
n = 1

1−x there is an easy and logical way of

getting the natural numbers: differentiating. ( 1
1−x )

′ = 1+2x+3x2 +4x3 + .... However, this does
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not match coefficient with degree since the coefficient n is matched with the degree n− 1. There-

fore, we have to multiply the result by x getting x+ 2x2 + 3x3 + 4x4 + ... =
∑∞

n=0 nx
n = x

(1−x)2 .

Iti s pretty logical that we can get the squares buy doing the same process, first differentiating and

then multiplying by x. We get the following for the nth powers:

1. x
(1−x)2 = x+ 2x2 + 3x3 + 4x4 + ...

2. x(x+1)
(1−x)3 = x+ 4x2 + 9x3 + 16x4 + ...

3. −x(x(x+4)+1)
(1−x)4 = x+ 8x2 + 27x3 + 64x4 + ...

4. x(x+1)(x(x+10)+1)
(1−x)5 = x+ 16x2 + 81x3 + 256x4 + ...

5. x(x(x(x(x+26)+66)+26)+1)
(1−x)6 = x+ 32x2 + 243x3 + 1024x4 + ...

6. x(x+1)(x(x(x(x+56)+246)+56)+1)
(1−x)7 = x+ 64x2 + 36x3 + 46x4 + ...

As you can see it gets terribly complicated so this time no clear pattern appeared, probably due

to the complexity of alternating multiplication with differentiation.

Explained Programs

Getting the Matrix

Figure 1: Getting the Matrix

Explanation line by line of the algorithm for getting the matrix
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1. The beginning of the function: we return a matrix and the input are a string of characters

( the pattern P) and the size of the alphabet (an integer z). Note that it is not the same

generating function for the pattern ”001” in a binary alphabet that in a ternary alphabet,

therefore we also need z.

2. We declare d, the matrix that will store the automata. The first parameter (the row)

describes the state, and the second parameter (the column) describes the character we are

introducing.

3. We use the automata algorithm shown in the previous chapter to calculate d.

4. Let m be the size of the pattern P.

5. Declaration of the matrix v, the future result. Note that the dimensions are m+1 rows and

m+2 columns since we have m+1 states and it is an extended matrix (so m+1+1=m+2

columns).

6. This means: ”for each row (state) in the transition function d”

7. Given the row ( determined by the previous for ), check every column (possible character in

the alphabet ). These two parameters describe an arrow. The start state is clearly the row

we are analyzing, and the end state is saved in d[i][j]. Therefore we have to add a z (z++)

to v[i][d[i][j]].

8. End of for

9. Return the resultant matrix.

10. End of the function

Gaussian Elimination

Again, let us analyze it line by line:

• 1. void means that we will not return anything, as the result will be in printed form. The

input is the matrix we want to solve.

• 2. Define n as the number of rows of matrix v. ( Note that this is equal to the number of

columns -1 )

• 3. Let ok be a boolean that shows if the matrix has a unique solution, i.e. all the equations

are linearly independent.

• 4. For each row in the matrix and while the system is described as linearly independent:
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Figure 2: Gaussian Elimination

• 5. If the leading coefficient is 0

• 6. Describe momentarily the system as linearly dependent

• 7-12. Look for the following rows and see if any has coefficient different from 0 in that

column. In case there exists, describe the system again as linearly independent and swap

rows. All this ensures that either the system is described as linearly dependent or we have

a leading coefficient in the diagonal.

• 14. In case we have an existing leading coefficient in the row:

• 15-16. Put the leading coefficient to 1 by dividing the row by the previous leading coefficient.

• 17-18 For every row with a non-zero coefficient in that column (except row i, where we want

it to be 1):

• 19-20 Subtract v[j][i] times row i to row j so that we get a 0 in the position v[j][i].
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• 21-23 Closing all the opened if’s and loops.

• 24-25 Print the solution in case it has one; otherwise print ”Depending system”

• 26 End of the function.

Simplifying fractions of polynomials

Figure 3: Simplification of 2 polynomials

Explanation of the algorithm: Given the list of possible divisors (DIV), we check every

one of them, if both numerator (a.first) and denominator (a.second) are divisible. Then we divide

both of them by this divisor, in case one or both of them are not divisible, we continue to look

through the list of divisors. Note that if both of them are divisible in the next loop we will continue

to look at the same divisor since it is possible that they share this divisor more than once.

Now let us look the function DivideBy(a, b), which is very similar to divisible(a,b). Therefore we

will only show one of them, also note that the algorithm is exactly the one we perform when doing

the division by hand:

Explanation of the algorithm

• 1. The function divides a by b, so nothing is returned.

• 2-4. In case the degree of a is smaller than the degree of b, it is already divided; otherwise,

create a vector to store the result: a polynomial of degree= deg(a)− deg(b).

• 5. For each coefficient of a

• 6-7. Divide it by the leading coefficient of b and store this value. Note that the degree of

this coefficient is n − i − 1 because it starts with n − 1 and then it goes down 1 for each

iteration.

• 8-10. Once known the value multiply each coefficient of b and subtract this multiplication

from a.
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Figure 4: Divide Function

• 11. End of the for started in line 5

• 12. Let a be v, which is a
b .

• 13. End of function

Other Programs

Axioms of Z

1. If a,b ∈ Z then a+ b and a · b are ∈ Z

2. There exists an element 0 ∈ Z for which a+ 0 = a for every Z

3. There exists an element 1 ∈ Z for which a · 1 = a for every Z

4. a · (b+ c) = a · b+ a · c

5. (a+ b) + c = a+ (b+ c) and (a · b) · c = a · (b · c)

6. For every a ∈ Z there exists a ′ − a′ ∈ Z such that a+ (−a) = 0

7. There are only 3 types of Z: Z+, 0 and Z−

8. −1 ∈ Z−, 1 ∈ Z+

9. Well Ordering Principle, In a set S ̸= ∅ there exists a smallest element

10. a = b and b = c → a = c
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Figure 5: Program for ex

11. 1 ̸= 0
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Figure 6: Program for sin(x)
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Figure 7: Naive string matcher
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Figure 8: Rabin-Karp algorithm
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Figure 9: Automata Transition Function
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Figure 10: Automata simulation
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Figure 11: Searcher in genes part 1
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Figure 12: Searcher in genes part 2
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Figure 13: Transition function for patterns with gaps
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Figure 14: Special reading for patterns with gaps
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Figure 15: Transition function for the either pattern problem
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números pages 209-253.

[5] EUCLIDES: Elementos Spanish translation and anotations by Maŕıa Luisa Puertas Castaños.
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